Skip to main content

Advertisement

Log in

Potential Anti-inflammatory Effects of Proton Pump Inhibitors: A Review and Discussion of the Clinical Implications

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Proton pump inhibitors (PPIs) are potent blockers of gastric acid secretion, and are widely regarded as the agents of choice for the treatment of acid-peptic disorders. For patients with upper gastrointestinal symptoms of uncertain etiology, improvement with PPI therapy is considered prima facie evidence of a pathogenetic role for acid-peptic disease. In addition to anti-secretory effects, however, PPIs have been found to have anti-oxidant properties and direct effects on neutrophils, monocytes, endothelial, and epithelial cells that might prevent inflammation. Those anti-inflammatory effects of the PPIs might influence a variety of inflammatory disorders, both peptic and non-peptic, within and outside of the gastrointestinal tract. The purpose of this report is to review the mechanisms whereby PPIs might exert anti-inflammatory effects exclusive of gastric acid inhibition, to discuss the clinical implications of those effects, and to emphasize that a clinical response to PPIs should not be construed as proof for an underlying acid-peptic disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shin JM, Sachs G. Pharmacology of proton pump inhibitors. Curr Gastroenterol Rep. 2008;10:528–534.

    Article  PubMed  Google Scholar 

  2. Forgacs I, Loganayagam A. Overprescribing proton pump inhibitors. BMJ. 2008;336:2–3.

    Article  PubMed  Google Scholar 

  3. Lassen A, Hallas J, Schaffalitzky De Muckadell OB. Use of anti-secretory medication: a population-based cohort study. Aliment Pharmacol Ther. 2004;20:577–583.

    Article  PubMed  CAS  Google Scholar 

  4. Ichikawa H, Yoshida N, Takagi T, et al. Lansoprazole ameliorates intestinal mucosal damage induced by ischemia-reperfusion in rats. World J Gastroenterol. 2004;10:2814–2817.

    PubMed  CAS  Google Scholar 

  5. Kuroda M, Yoshida N, Ichikawa H, et al. Lansoprazole, a proton pump inhibitor, reduces the severity of indomethacin-induced rat enteritis. Int J Mol Med. 2006;17:89–93.

    PubMed  CAS  Google Scholar 

  6. Heinzow U, Schlegelberger T. Omeprazole in ulcerative colitis. Lancet. 1994;343:477.

    Article  PubMed  CAS  Google Scholar 

  7. Namazi MR, Jowkar F. A succinct review of the general and immunological pharmacologic effects of proton pump inhibitors. J Clin Pharm Ther. 2008;33:215–217.

    Article  PubMed  CAS  Google Scholar 

  8. Weiss SJ. Oxygen, ischemia and inflammation. Acta Physiol Scand Suppl. 1986;548:9–37.

    PubMed  CAS  Google Scholar 

  9. Lapenna D, de Gioia S, Ciofani G, Festi D, Cuccurullo F. Antioxidant properties of omeprazole. FEBS Lett. 1996;382:189–192.

    Article  PubMed  CAS  Google Scholar 

  10. Li XQ, Andersson TB, Ahlström M, Weidolf L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos. 2004;32:821–827.

    Article  PubMed  CAS  Google Scholar 

  11. Cederberg C, Thomson AB, Mahachai V, et al. Effect of intravenous and oral omeprazole on 24-hour intragastric acidity in duodenal ulcer patients. Gastroenterology. 1992;103:913–918.

    PubMed  CAS  Google Scholar 

  12. Blandizzi C, Fornai M, Colucci R, et al. Lansoprazole prevents experimental gastric injury induced by non-steroidal anti-inflammatory drugs through a reduction of mucosal oxidative damage. World J Gastroenterol. 2005;11:4052–4060.

    PubMed  CAS  Google Scholar 

  13. Simon WA, Sturm E, Hartmann HJ, Weser U. Hydroxyl radical scavenging reactivity of proton pump inhibitors. Biochem Pharmacol. 2006;71:1337–1341.

    Article  PubMed  CAS  Google Scholar 

  14. Biswas K, Bandyopadhyay U, Chattopadhyay I, Varadaraj A, Ali E, Banerjee RK. A novel antioxidant and antiapoptotic role of omeprazole to block gastric ulcer through scavenging of hydroxyl radical. J Biol Chem. 2003;278:10993–11001.

    Article  PubMed  CAS  Google Scholar 

  15. Pastoris O, Verri M, Boschi F, et al. Effects of esomeprazole on glutathione levels and mitochondrial oxidative phosphorylation in the gastric mucosa of rats treated with indomethacin. Naunyn Schmiedebergs Arch Pharmacol. 2008;378:421–429.

    Article  PubMed  CAS  Google Scholar 

  16. Blandizzi C, Natale G, Gherardi G, et al. Acid-independent gastroprotective effects of lansoprazole in experimental mucosal injury. Dig Dis Sci. 1999;44:2039–2050.

    Article  PubMed  CAS  Google Scholar 

  17. Koch TR, Petro A, Darrabie M, Opara EC. Effect of the H, K-ATPase inhibitor, esomeprazole magnesium, on gut total antioxidant capacity in mice. J Nutr Biochem. 2004;15:522–526.

    Article  PubMed  CAS  Google Scholar 

  18. Becker JC, Grosser N, Waltke C, et al. Beyond gastric acid reduction: proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells. Biochem Biophys Res Commun. 2006;345:1014–1021.

    Article  PubMed  CAS  Google Scholar 

  19. Ritter M, Schratzberger P, Rossmann H, et al. Effect of inhibitors of Na+/H+-exchange and gastric H+/K+ ATPase on cell volume, intracellular pH and migration of human polymorphonuclear leucocytes. Br J Pharmacol. 1998;124:627–638.

    Article  PubMed  CAS  Google Scholar 

  20. Lafourcade C, Sobo K, Kieffer-Jaquinod S, Garin J, van der Goot FG. Regulation of the V-ATPase along the endocytic pathway occurs through reversible subunit association and membrane localization. PLoS ONE. 2008;3(7):e2758.

    Article  PubMed  CAS  Google Scholar 

  21. Harada M, Shakado S, Sakisaka S, et al. Bafilomycin A1, a specific inhibitor of V-type H+-ATPases, inhibits the acidification of endocytic structures and inhibits horseradish peroxidase uptake in isolated rat sinusoidal endothelial cells. Liver. 1997;17:244–250.

    PubMed  CAS  Google Scholar 

  22. Luciani F, Spada M, De Milito A, et al. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. J Natl Cancer Inst. 2004;96:1702–1713.

    PubMed  CAS  Google Scholar 

  23. Wandall JH. Effects of omeprazole on neutrophil chemotaxis, super oxide production, degranulation, and translocation of cytochrome b-245. Gut. 1992;33:617–621.

    Article  PubMed  CAS  Google Scholar 

  24. Handa O, Yoshida N, Fujita N, et al. Molecular mechanisms involved in anti-inflammatory effects of proton pump inhibitors. Inflamm Res. 2006;55:476–480.

    Article  PubMed  CAS  Google Scholar 

  25. Suzuki M, Nakamura M, Mori M, Miura S, Tsuchiya M, Ishil H. Lansoprazole inhibits oxygen-derived free radical production from neutrophils activated by Helicobacter pylori. J Clin Gastroenterol. 1995;20(Suppl 2):S93–S96.

    Article  PubMed  Google Scholar 

  26. Styrt B, Klempner MS. Inhibition of neutrophil oxidative metabolism by lysosomotropic weak bases. Blood. 1986;67:334–342.

    PubMed  CAS  Google Scholar 

  27. Suzuki M, Mori M, Miura S, et al. Omeprazole attenuates oxygen-derived free radical production from human neutrophils. Free Radic Biol Med. 1996;21:727–731.

    Article  PubMed  CAS  Google Scholar 

  28. Agastya G, West BC, Callahan JM. Omeprazole inhibits phagocytosis and acidification of phagolysosomes of normal human neutrophils in vitro. Immunopharmacol Immunotoxicol. 2000;22:357–372.

    Article  PubMed  CAS  Google Scholar 

  29. Zedtwitz-Liebenstein K, Wenisch C, Patruta S, Parschalk B, Daxböck F, Graninger W. Omeprazole treatment diminishes intra- and extracellular neutrophil reactive oxygen production and bactericidal activity. Crit Care Med. 2002;30:1118–1122.

    Article  PubMed  CAS  Google Scholar 

  30. Yoshida N, Yoshikawa T, Tanaka Y, et al. A new mechanism for anti-inflammatory actions of proton pump inhibitors—inhibitory effects on neutrophil-endothelial cell interactions. Aliment Pharmacol Ther. 2000;14(Suppl 1):74–81.

    Article  PubMed  CAS  Google Scholar 

  31. Sasaki T, Yamaya M, Yasuda H, et al. The proton pump inhibitor lansoprazole inhibits rhinovirus infection in cultured human tracheal epithelial cells. Eur J Pharmacol. 2005;509(2–3):201–210.

    Article  PubMed  CAS  Google Scholar 

  32. Ohara T, Arakawa T. Lansoprazole decreases peripheral blood monocytes and intercellular adhesion molecule-1-positive mononuclear cells. Dig Dis Sci. 1999;44:1710–1715.

    Article  PubMed  CAS  Google Scholar 

  33. Martins de Oliveira R, Antunes E, Pedrazzoli J Jr, Gambero A. The inhibitory effects of H+ K+ ATPase inhibitors on human neutrophils in vitro: restoration by a K+ ionophore. Inflamm Res. 2007;56:105–111.

    Article  PubMed  CAS  Google Scholar 

  34. Smith WB, Gamble JR, Clark-Lewis I, Vadas MA. Interleukin-8 induces neutrophil transendothelial migration. Immunology. 1991;72:65–72.

    PubMed  CAS  Google Scholar 

  35. Strober W. Immunology. Unraveling gut inflammation. Science. 2006;313:1052–1054.

    Article  PubMed  CAS  Google Scholar 

  36. Verdu E, Viani F, Armstrong D, et al. Effect of omeprazole on intragastric bacterial counts, nitrates, nitrites, and N-nitroso compounds. Gut. 1994;35:455–460.

    Article  PubMed  CAS  Google Scholar 

  37. Vesper BJ, Jawdi A, Altman KW, Haines GKIII, Tao L, Radosevich JA. The effect of proton pump inhibitors on the human microbiota. Curr Drug Metab. 2009;10:84–89.

    Article  PubMed  CAS  Google Scholar 

  38. Nakao M, Malfertheiner P. Growth inhibitory and bactericidal activities of lansoprazole compared with those of omeprazole and pantoprazole against Helicobacter pylori. Helicobacter. 1998;3:21–27.

    Article  PubMed  CAS  Google Scholar 

  39. Monk BC, Mason AB, Abramochkin G, Haber JE, Seto-Young D, Perlin DS. The yeast plasma membrane proton pumping ATPase is a viable antifungal target. I. Effects of the cysteine-modifying reagent omeprazole. Biochim Biophys Acta. 1995;1239:81–90.

    Article  PubMed  Google Scholar 

  40. Furuta GT, Liacouras CA, Collins MH, Gupta SK, Justinich C, Putnam PE, Bonis P, Hassall E, Straumann A, Rothenberg ME, First International Gastrointestinal Eosinophil Research Symposium (FIGERS) Subcommittees. Eosinophilic esophagitis in children and adults: a systematic review and consensus recommendations for diagnosis and treatment. Gastroenterology. 2007;133:1342–1363.

    Google Scholar 

  41. Spechler SJ, Genta RM, Souza RF. Thoughts on the complex relationship between gastroesophageal reflux disease and eosinophilic esophagitis. Am J Gastroenterol. 2007;102:1301–1306.

    Article  PubMed  CAS  Google Scholar 

  42. Ngo P, Furuta GT, Antonioli DA, Fox VL. Eosinophils in the esophagus—peptic or allergic eosinophilic esophagitis? Case series of three patients with esophageal eosinophilia. Am J Gastroenterol. 2006;101:1666–1670.

    Article  PubMed  Google Scholar 

  43. Aceves SS, Furuta GT, Spechler SJ. Integrated approach to treatment of children and adults with eosinophilic esophagitis. Gastrointest Endosc Clin N Am. 2008;18:195–217.

    Article  PubMed  Google Scholar 

  44. Bohm M, Richter JE. Treatment of eosinophilic esophagitis: overview, current limitations, and future direction. Am J Gastroenterol. 2008;103:2635–2644.

    Article  PubMed  CAS  Google Scholar 

  45. Rafiee P, Theriot ME, Nelson VM, et al. Human esophageal microvascular endothelial cells respond to acidic pH stress by PI3K/AKT and p38 MAPK-regulated induction of Hsp70 and Hsp27. Am J Physiol Cell Physiol. 2006;291:C931–C945.

    Article  PubMed  CAS  Google Scholar 

  46. Barthel SR, Annis DS, Mosher DF, Johansson MW. Differential engagement of modules 1 and 4 of vascular cell adhesion molecule-1 (CD106) by integrins alpha4beta1 (CD49d/29) and alphaMbeta2 (CD11b/18) of eosinophils. J Biol Chem. 2006;281:32175–32187.

    Article  PubMed  CAS  Google Scholar 

  47. Laheij RJ, Sturkenboom MC, Hassing RJ, Dieleman J, Stricker BH, Jansen JB. Risk of community-acquired pneumonia and use of gastric acid-suppressive drugs. JAMA. 2004;292:1955–1960.

    Article  PubMed  CAS  Google Scholar 

  48. Herzig SJ, Howell MD, Ngo LH, Marcantonio ER. Acid-suppressive medication use and the risk for hospital-acquired pneumonia. JAMA. 2009;301:2120–2128.

    Article  PubMed  CAS  Google Scholar 

  49. Bajaj JS, Zadvornova Y, Heuman DM, et al. Association of proton pump inhibitor therapy with spontaneous bacterial peritonitis in cirrhotic patients with ascites. Am J Gastroenterol. 2009;104:1130–1134.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Medical Research, Department of Veterans Affairs (R.F. Souza and S.J. Spechler) and the National Institutes of Health (R01-CA134571 to R.F. Souza and S.J. Spechler, and R01-DK63621 to R.F. Souza).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Jon Spechler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kedika, R.R., Souza, R.F. & Spechler, S.J. Potential Anti-inflammatory Effects of Proton Pump Inhibitors: A Review and Discussion of the Clinical Implications. Dig Dis Sci 54, 2312–2317 (2009). https://doi.org/10.1007/s10620-009-0951-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-0951-9

Keywords

Navigation