Skip to main content

Advertisement

Log in

The Ying and Yang of STAT3 in Human Disease

  • CME Review
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

The transcription factor signal transducer and activator of transcription 3 (STAT3) is a critical regulator of multiple, diverse cellular processes. Heterozgyous, germline, loss-of-function mutations in STAT3 lead to the primary immune deficiency Hyper-IgE syndrome. Heterozygous, somatic, gain-of-function mutations in STAT3 have been reported in malignancy. Recently, germline, heterozygous mutations in STAT3 that confer a gain-of-function have been discovered and result in early-onset, multi-organ autoimmunity. This review summarizes what is known about the role of STAT3 in human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Zhong Z, Wen Z, Darnell Jr JE. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994;264(5155):95–8.

    Article  CAS  PubMed  Google Scholar 

  2. Levy DE, Darnell Jr JE. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3(9):651–62.

    Article  CAS  PubMed  Google Scholar 

  3. Holland SM et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357(16):1608–19.

    Article  CAS  PubMed  Google Scholar 

  4. Minegishi Y et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448(7157):1058–62.

    Article  CAS  PubMed  Google Scholar 

  5. Koskela HL et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20):1905–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Flanagan SE et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nat Genet. 2014;46(8):812–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Milner JD et al. Early-onset lymphoproliferation and autoimmunity caused by germline STAT3 gain-of-function mutations. Blood. 2015;125(4):591–9.

    Article  CAS  PubMed  Google Scholar 

  8. Haapaniemi EM et al. Autoimmunity, hypogammaglobulinemia, lymphoproliferation, and mycobacterial disease in patients with activating mutations in STAT3. Blood. 2015;125(4):639–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. O’Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med. 2013;368(2):161–70.

    Article  PubMed  CAS  Google Scholar 

  10. Mogensen TH. STAT3 and the Hyper-IgE syndrome: clinical presentation, genetic origin, pathogenesis, novel findings and remaining uncertainties. JAKSTAT. 2013;2(2), e23435.

    PubMed Central  PubMed  Google Scholar 

  11. UniProt C. UniProt: a hub for protein information. Nucleic Acids Res. 2015;43(Database issue):D204–12.

    Google Scholar 

  12. Ng IH et al. Selective STAT3-alpha or -beta expression reveals spliceform-specific phosphorylation kinetics, nuclear retention and distinct gene expression outcomes. Biochem J. 2012;447(1):125–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Shao H, Quintero AJ, Tweardy DJ. Identification and characterization of cis elements in the STAT3 gene regulating STAT3 alpha and STAT3 beta messenger RNA splicing. Blood. 2001;98(13):3853–6.

    Article  CAS  PubMed  Google Scholar 

  14. Dewilde S et al. Of alphas and betas: distinct and overlapping functions of STAT3 isoforms. Front Biosci. 2008;13:6501–14.

    Article  CAS  PubMed  Google Scholar 

  15. Maritano D et al. The STAT3 isoforms alpha and beta have unique and specific functions. Nat Immunol. 2004;5(4):401–9.

    Article  CAS  PubMed  Google Scholar 

  16. Chakraborty A, Tweardy DJ. Granulocyte colony-stimulating factor activates a 72-kDa isoform of STAT3 in human neutrophils. J Leukoc Biol. 1998;64(5):675–80.

    CAS  PubMed  Google Scholar 

  17. Hevehan DL, Miller WM, Papoutsakis ET. Differential expression and phosphorylation of distinct STAT3 proteins during granulocytic differentiation. Blood. 2002;99(5):1627–37.

    Article  CAS  PubMed  Google Scholar 

  18. Villarino AV et al. Mechanisms of Jak/STAT signaling in immunity and disease. J Immunol. 2015;194(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  19. Casanova JL, Holland SM, Notarangelo LD. Inborn errors of human JAKs and STATs. Immunity. 2012;36(4):515–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Wake, M.S. and C.J. Watson. STAT3 the oncogene - still eluding therapy? FEBS J. 2015;282(14):2600–11.

  21. Yang J, Stark GR. Roles of unphosphorylated STATs in signaling. Cell Res. 2008;18(4):443–51.

    Article  CAS  PubMed  Google Scholar 

  22. Decker T, Kovarik P. Serine phosphorylation of STATs. Oncogene. 2000;19(21):2628–37.

    Article  CAS  PubMed  Google Scholar 

  23. Carow B, Rottenberg ME. SOCS3, a major regulator of infection and inflammation. Front Immunol. 2014;5:58.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  24. Wegrzyn J et al. Function of mitochondrial Stat3 in cellular respiration. Science. 2009;323(5915):793–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Camporeale A, Poli V. IL-6, IL-17 and STAT3: a holy trinity in auto-immunity? Front Biosci (Landmark Ed). 2012;17:2306–26.

    Article  CAS  Google Scholar 

  26. Takeda K et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci U S A. 1997;94(8):3801–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Tangye SG, Cook MC, Fulcher DA. Insights into the role of STAT3 in human lymphocyte differentiation as revealed by the hyper-IgE syndrome. J Immunol. 2009;182(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kane A et al. STAT3 is a central regulator of lymphocyte differentiation and function. Curr Opin Immunol. 2014;28:49–57.

    Article  CAS  PubMed  Google Scholar 

  29. Fornek JL et al. Critical role for Stat3 in T-dependent terminal differentiation of IgG B cells. Blood. 2006;107(3):1085–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Cui W et al. An interleukin-21-interleukin-10-STAT3 pathway is critical for functional maturation of memory CD8+ T cells. Immunity. 2011;35(5):792–805.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Takeda K et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity. 1999;10(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  32. Gotthardt D et al. Loss of STAT3 in murine NK cells enhances NK cell-dependent tumor surveillance. Blood. 2014;124(15):2370–9.

    Article  CAS  PubMed  Google Scholar 

  33. Davis SD, Schaller J, Wedgwood RJ. Job’s Syndrome. Recurrent, “cold”, staphylococcal abscesses. Lancet. 1966;1(7445):1013–5.

    Article  CAS  PubMed  Google Scholar 

  34. Buckley RH, Wray BB, Belmaker EZ. Extreme hyperimmunoglobulinemia E and undue susceptibility to infection. Pediatrics. 1972;49(1):59–70.

    CAS  PubMed  Google Scholar 

  35. Grimbacher B et al. Hyper-IgE syndrome with recurrent infections--an autosomal dominant multisystem disorder. N Engl J Med. 1999;340(9):692–702.

    Article  CAS  PubMed  Google Scholar 

  36. Chandesris MO et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a French national survey. Medicine (Baltimore). 2012;91(4):e1–19.

    Article  PubMed Central  CAS  Google Scholar 

  37. Jiao H et al. Novel and recurrent STAT3 mutations in hyper-IgE syndrome patients from different ethnic groups. Mol Immunol. 2008;46(1):202–6.

    Article  CAS  PubMed  Google Scholar 

  38. Schimke LF et al. Diagnostic approach to the hyper-IgE syndromes: immunologic and clinical key findings to differentiate hyper-IgE syndromes from atopic dermatitis. J Allergy Clin Immunol. 2010;126(3):611–7.

    Article  CAS  PubMed  Google Scholar 

  39. Woellner C et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125(2):424–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Siegel AM et al. A critical role for STAT3 transcription factor signaling in the development and maintenance of human T cell memory. Immunity. 2011;35(5):806–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Chandesris MO et al. Frequent and widespread vascular abnormalities in human signal transducer and activator of transcription 3 deficiency. Circ Cardiovasc Genet. 2012;5(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  42. Wallet N et al. Diffuse large B-cell lymphoma in hyperimmunoglobulinemia E syndrome. Clin Lymphoma Myeloma. 2007;7(6):425–7.

    Article  PubMed  Google Scholar 

  43. Sowerwine KJ, Holland SM, Freeman AF. Hyper-IgE syndrome update. Ann N Y Acad Sci. 2012;1250:25–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Siegel AM et al. Diminished allergic disease in patients with STAT3 mutations reveals a role for STAT3 signaling in mast cell degranulation. J Allergy Clin Immunol. 2013;132(6):1388–96.

    Article  CAS  PubMed  Google Scholar 

  45. Wolach O et al. Variable clinical expressivity of STAT3 mutation in hyperimmunoglobulin E syndrome: genetic and clinical studies of six patients. J Clin Immunol. 2014;34(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  46. Grimbacher B et al. Genetic linkage of hyper-IgE syndrome to chromosome 4. Am J Hum Genet. 1999;65(3):735–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Milner JD et al. Impaired T(H)17 cell differentiation in subjects with autosomal dominant hyper-IgE syndrome. Nature. 2008;452(7188):773–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Ma CS et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med. 2008;205(7):1551–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. de Beaucoudrey L et al. Mutations in STAT3 and IL12RB1 impair the development of human IL-17-producing T cells. J Exp Med. 2008;205(7):1543–50.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Burkett PR, Meyer Zu Horste G, Kuchroo VK. Pouring fuel on the fire: Th17 cells, the environment, and autoimmunity. J Clin Invest. 2015;125(6):2211–9.

    Article  PubMed  Google Scholar 

  51. Hsu AP et al. Intermediate phenotypes in patients with autosomal dominant hyper-IgE syndrome caused by somatic mosaicism. J Allergy Clin Immunol. 2013;131(6):1586–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Avery DT et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J Exp Med. 2010;207(1):155–71.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Meyer-Bahlburg A et al. Heterozygous signal transducer and activator of transcription 3 mutations in hyper-IgE syndrome result in altered B-cell maturation. J Allergy Clin Immunol. 2012;129(2):559–62.

    Article  CAS  PubMed  Google Scholar 

  54. Deenick EK et al. Naive and memory human B cells have distinct requirements for STAT3 activation to differentiate into antibody-secreting plasma cells. J Exp Med. 2013;210(12):2739–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Ma CS et al. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood. 2012;119(17):3997–4008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Ives ML et al. Signal transducer and activator of transcription 3 (STAT3) mutations underlying autosomal dominant hyper-IgE syndrome impair human CD8(+) T-cell memory formation and function. J Allergy Clin Immunol. 2013;132(2):400–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Wilson RP et al. STAT3 is a critical cell-intrinsic regulator of human unconventional T cell numbers and function. J Exp Med. 2015;212(6):855–64.

    Article  CAS  PubMed  Google Scholar 

  58. Saito M et al. Defective IL-10 signaling in hyper-IgE syndrome results in impaired generation of tolerogenic dendritic cells and induced regulatory T cells. J Exp Med. 2011;208(2):235–49.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Steward-Tharp SM et al. A mouse model of HIES reveals pro- and anti-inflammatory functions of STAT3. Blood. 2014;123(19):2978–87.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Zhang LY et al. Clinical features, STAT3 gene mutations and Th17 cell analysis in nine children with hyper-IgE syndrome in mainland China. Scand J Immunol. 2013;78(3):258–65.

    Article  CAS  PubMed  Google Scholar 

  61. Sundin M et al. Novel STAT3 mutation causing hyper-IgE syndrome: studies of the clinical course and immunopathology. J Clin Immunol. 2014;34(4):469–77.

    Article  CAS  PubMed  Google Scholar 

  62. Mogensen TH, Jakobsen MA, Larsen CS. Identification of a novel STAT3 mutation in a patient with hyper-IgE syndrome. Scand J Infect Dis. 2013;45(3):235–8.

    Article  PubMed  Google Scholar 

  63. Saikia B et al. Hyper-IgE syndrome with a novel STAT3 mutation-a single center study from India. Asian Pac J Allergy Immunol. 2014;32(4):321–7.

    PubMed  Google Scholar 

  64. Renner ED et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol. 2008;122(1):181–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Yong PF et al. An update on the hyper-IgE syndromes. Arthritis Res Ther. 2012;14(6):228.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Goussetis E et al. Successful long-term immunologic reconstitution by allogeneic hematopoietic stem cell transplantation cures patients with autosomal dominant hyper-IgE syndrome. J Allergy Clin Immunol. 2010;126(2):392–4.

    Article  PubMed  Google Scholar 

  67. Nester TA et al. Effects of allogeneic peripheral stem cell transplantation in a patient with job syndrome of hyperimmunoglobulinemia E and recurrent infections. Am J Med. 1998;105(2):162–4.

    Article  CAS  PubMed  Google Scholar 

  68. Gennery AR et al. Bone marrow transplantation does not correct the hyper IgE syndrome. Bone Marrow Transplant. 2000;25(12):1303–5.

    Article  CAS  PubMed  Google Scholar 

  69. Patel NC et al. Successful haploidentical donor hematopoietic stem cell transplant and restoration of STAT3 function in an adolescent with autosomal dominant Hyper-IgE syndrome. J Clin Immunol. 2015;35(5):479–85.

    Article  CAS  PubMed  Google Scholar 

  70. Jerez A et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood. 2012;120(15):3048–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Rajala HL et al. Uncovering the pathogenesis of large granular lymphocytic leukemia-novel STAT3 and STAT5b mutations. Ann Med. 2014;46(3):114–22.

    Article  CAS  PubMed  Google Scholar 

  72. Pilati C et al. Somatic mutations activating STAT3 in human inflammatory hepatocellular adenomas. J Exp Med. 2011;208(7):1359–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Jerez A et al. STAT3 mutations indicate the presence of subclinical T-cell clones in a subset of aplastic anemia and myelodysplastic syndrome patients. Blood. 2013;122(14):2453–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Verbsky JW, Chatila TA. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX) and IPEX-related disorders: an evolving web of heritable autoimmune diseases. Curr Opin Pediatr. 2013;25(6):708–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Oliveira JB, Fleisher T. Autoimmune lymphoproliferative syndrome. Curr Opin Allergy Clin Immunol. 2004;4(6):497–503.

    Article  CAS  PubMed  Google Scholar 

  76. Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010;40(7):1830–5.

    Article  CAS  PubMed  Google Scholar 

  77. Chaudhry A et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science. 2009;326(5955):986–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Cohen AC et al. Cutting edge: decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J Immunol. 2006;177(5):2770–4.

    Article  CAS  PubMed  Google Scholar 

  79. Komatsu N et al. Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 2014;20(1):62–8.

    Article  CAS  PubMed  Google Scholar 

  80. Gagliani N et al. Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 2015;523(7559):221–5.

  81. Tsoi LC et al. Identification of 15 new psoriasis susceptibility loci highlights the role of innate immunity. Nat Genet. 2012;44(12):1341–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Danoy P et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet. 2010;6(12), e1001195.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  83. Seddighzadeh M et al. Variants within STAT genes reveal association with anticitrullinated protein antibody-negative rheumatoid arthritis in 2 European populations. J Rheumatol. 2012;39(8):1509–16.

    Article  CAS  PubMed  Google Scholar 

  84. Barrett JC et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet. 2008;40(8):955–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Frampton JE. Tocilizumab: a review of its use in the treatment of juvenile idiopathic arthritis. Paediatr Drugs. 2013;15(6):515–31.

    Article  PubMed  Google Scholar 

  86. van Vollenhoven RF et al. Tofacitinib or adalimumab versus placebo in rheumatoid arthritis. N Engl J Med. 2012;367(6):508–19.

    Article  PubMed  CAS  Google Scholar 

  87. Lee EB et al. Tofacitinib versus methotrexate in rheumatoid arthritis. N Engl J Med. 2014;370(25):2377–86.

    Article  PubMed  CAS  Google Scholar 

  88. Dupuis S et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science. 2001;293(5528):300–3.

    Article  CAS  PubMed  Google Scholar 

  89. Dupuis S et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33(3):388–91.

    Article  CAS  PubMed  Google Scholar 

  90. Averbuch D et al. The clinical spectrum of patients with deficiency of signal transducer and activator of transcription-1. Pediatr Infect Dis J. 2011;30(4):352–5.

    Article  PubMed  Google Scholar 

  91. van de Veerdonk FL et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365(1):54–61.

    Article  PubMed  Google Scholar 

  92. Liu L et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Hambleton S et al. STAT2 deficiency and susceptibility to viral illness in humans. Proc Natl Acad Sci U S A. 2013;110(8):3053–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Kofoed EM et al. Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med. 2003;349(12):1139–47.

    Article  CAS  PubMed  Google Scholar 

  95. Yildiz M et al. Activating STAT6 mutations in follicular lymphoma. Blood. 2015;125(4):668–79.

    Article  CAS  PubMed  Google Scholar 

  96. McDonald DR. TH17 deficiency in human disease. J Allergy Clin Immunol. 2012;129(6):1429–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. He J et al. STAT3 mutations correlated with hyper-IgE syndrome lead to blockage of IL-6/STAT3 signalling pathway. J Biosci. 2012;37(2):243–57.

    Article  CAS  PubMed  Google Scholar 

  98. Uzel G et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol. 2013;131(6):1611–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Kristensen T et al. Clinical relevance of sensitive and quantitative STAT3 mutation analysis using next-generation sequencing in T-cell large granular lymphocytic leukemia. J Mol Diagn. 2014;16(4):382–92.

    Article  CAS  PubMed  Google Scholar 

  100. Ohgami RS et al. STAT3 mutations are frequent in CD30+ T-cell lymphomas and T-cell large granular lymphocytic leukemia. Leukemia. 2013;27(11):2244–7.

    Article  CAS  PubMed  Google Scholar 

  101. Miyazaki K et al. An adolescent with marked hyperimmuno-globulinemia E showing minimal change nephrotic syndrome and a STAT3 gene mutation. Clin Nephrol. 2011;75(4):369–73.

    Article  CAS  PubMed  Google Scholar 

  102. Giacomelli M et al. SH2-domain mutations in STAT3 in hyper-IgE syndrome patients result in impairment of IL-10 function. Eur J Immunol. 2011;41(10):3075–84.

    Article  CAS  PubMed  Google Scholar 

  103. Al Khatib S et al. Defects along the T(H)17 differentiation pathway underlie genetically distinct forms of the hyper IgE syndrome. J Allergy Clin Immunol. 2009;124(2):342–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the contributions of the members of the M.A.C. laboratory, particularly Ms. Nermina Saucier. This work was supported in part by the intramural research program of the National Institute of Allergy and Infectious Diseases, NIH. Work in M.A.C’s laboratory was supported by The Children’s Discovery Institute and St. Louis Children’s Hospital, The Scleroderma Foundation, the Rheumatic Diseases Core Center at Washington University (P30AR048335), and NIH training grant 5T32AR007279 (T.P.V.).

Conflict of Interest

T.P.V., J.D.M., and M.A.C. declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan A. Cooper.

Additional information

Up to 1.0 AMA PRA Category 1 Credit™ of Continuing Medical Education Credit can now be obtained by reading this review article and completing all activity components by visiting the Clinical Immunology Society web site at http://www.clinimmsoc.org/education/continuing-medical-education/e-learning-tools/journal-cme

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogel, T.P., Milner, J.D. & Cooper, M.A. The Ying and Yang of STAT3 in Human Disease. J Clin Immunol 35, 615–623 (2015). https://doi.org/10.1007/s10875-015-0187-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-015-0187-8

Keywords

Navigation