Skip to main content
Log in

Non-enzymatic glycation induces structural modifications of myoglobin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Increased glucose concentration in diabetes mellitus causes glycation of several proteins, leading to changes in their properties. Although glycation-induced functional modification of myoglobin is known, structural modification of the protein has not yet been reported. Here, we have studied glucose-modified structural changes of the heme protein. After in vitro glycation of metmyoglobin (Mb) by glucose at 25°C for 6 days, glycated myoglobin (GMb) and unchanged Mb have been separated by ion exchange (BioRex 70) chromatography, and their properties have been compared. Compared to Mb, GMb exhibits increased absorbance around 280 nm and enhanced fluorescence emission with excitation at 285 nm. Fluorescence quenching experiments of the proteins by acrylamide and KI indicate that more surface accessible tryptophan residues are exposed in GMb. CD spectroscopic study reveals a change in the secondary structure of GMb with decreased α-helix content. 1-anilino-naphthaline-8-sulfonate (ANS) binding with Mb and GMb indicates that glycation increases hydrophobicity of the heme protein. GMb appears to be less stable with respect to thermal denaturation and differential calorimetry experiments. Heme-globin linkage becomes weaker in GMb, as shown by spectroscopic and gel electrophoresis experiments. A correlation between glycation-induced structural and functional modifications of the heme protein has been suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biemel KM, Friedl DA, Lederer MO (2002) Identification and quantification of major maillard-crosslinks in human serum albumin and lens protein: evidence for glucosepane as the dominant compound. J Biol Chem 277:24907–24915

    Article  CAS  PubMed  Google Scholar 

  2. Turk Z, Misur I, Turk N, Benko B (1999) Rat tissue collagen modified by advanced glycation: correlation with duration of diabetes and glycemic control. Clin Chem Lab Med 37:813–820

    Article  CAS  PubMed  Google Scholar 

  3. Stewart JM, Kilpatric ES, Cathcart S, Small M, Domoniczac MH (1994) Low-density lipoprotein particle size in type 2 diabetic patients and age matched controls. Ann Clin Biochem 31:153–159

    PubMed  Google Scholar 

  4. De Rosa MC, Sanna MT, Messana I, Castagnola M, Galtieri A, Tellone E, Scatena R, Bolta B, Bolta M, Giardina B (1998) Glycated human hemoglobin (HbA1c): functional characteristics and molecular modeling studies. Biophys Chem 72:323–335

    Article  PubMed  Google Scholar 

  5. Baynes JW, Watkins NG, Fisher CI, Hull CJ, Patric JS, Ahmed MU, Dunn JA, Thorp SR (1989) The Amadori product on protein structure and reactions. In: Baynes JW, Monnier VM (eds) Maillard reaction in aging, diabetes and nutrition. Alan R. Liss, New York, pp 43–67

    Google Scholar 

  6. Cohen MP, Wu V (1994) Purification of glycated hemoglobin. Methods Enzymol 231:65–75

    Article  CAS  PubMed  Google Scholar 

  7. Wolffenbuttel BH, Giordano D, Founds HW, Bucala R (1996) Long-term assessment of glucose control by hemoglobin-AGE measurement. Lancet 347:513–515

    Article  CAS  PubMed  Google Scholar 

  8. Svacina S, Hovorka R, Skrha J (1990) Computer models of albumin and hemoglobin glycation. Comput Meth Prog Biomed 32:259–263

    Article  CAS  Google Scholar 

  9. Watala C, Gwozdzinski K, Malek M (1992) Direct evidence for the alterations in protein structure and conformation upon in vitro nonenzymatic glycosylation. Int J Biochem 24:1295–1302

    Article  CAS  PubMed  Google Scholar 

  10. Peterson KP, Pavlovich JG, Goldstein D, Little R, England J, Peterson CM (1998) What is hemoglobin A1C? An analysis of glycated hemoglobin by eletrospray ionization mass spectrometry. Clin Chem 44:1951–1958

    CAS  PubMed  Google Scholar 

  11. Khoo UY, Newman DJ, Miller WK, Price CP (1994) The influence of glycation on the peroxidase activity of hemoglobin. Eur J Clin Chem Clin Biochem 32:435–440

    CAS  PubMed  Google Scholar 

  12. Inouye M, Mio T, Sumino K (1999) Glycated hemoglobin and lipid peroxidation in erythrocytes of diabetic patients. Metabolism 48:205–209

    Article  CAS  PubMed  Google Scholar 

  13. Kar M, Chakraborti AS (1999) Release of iron from hemoglobin—a possible source of free radicals in diabetes mellitus. Ind J Exptl Biol 37:190–192

    CAS  Google Scholar 

  14. Kar M, Chakraborti AS (2001) Effect of glycosylation on iron-mediated free radical reactions of hemoglobin. Curr Sci 80:770–773

    CAS  Google Scholar 

  15. Sen S, Kar M, Roy A, Chakraborti AS (2005) Effect of nonenzymatic glycation on functional and structural properties of hemoglobin. Biophys Chem 113:289–298

    Article  CAS  PubMed  Google Scholar 

  16. Kar M, Roy A, Bose T, Chakraborti AS (2006) Effect of glycation of hemoglobin on its interaction with trifluoperazine. Protein J 25:202–211

    Article  CAS  PubMed  Google Scholar 

  17. Sen S, Bose T, Roy A, Chakraborti AS (2007) Effect of non-enzymatic glycation on esterase activities of hemoglobin and myoglobin. Mol Cell Biochem 301:251–257

    Article  CAS  PubMed  Google Scholar 

  18. Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease. Methods Enzymol 186:1–88

    Article  CAS  PubMed  Google Scholar 

  19. Bose T, Chakraborti AS (2008) Fructose-induced structural and functional modifications of hemoglobin: implication for oxidative stress in diabetes mellitus. Biochim Biophys Acta 1780:800–808

    CAS  PubMed  Google Scholar 

  20. Baynes JW, Thorpe SR (1999) Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 48:1–9

    Article  CAS  PubMed  Google Scholar 

  21. Rosen P, Nawroth PP, King C, Moller W, Tritschler HJ, Packer L (2001) The role of oxidative stress in the onset and progression of diabetes and its complications: a summary of Congress Series sponsored by UNESCO-MCBN, the American Diabetes Association and the German Diabetes Society. Diabetes Metab Res Rev 17:189–212

    Article  CAS  PubMed  Google Scholar 

  22. Stryer L (1995) Biochemistry, 4th edn. W.H. Freeman and Co, New York, pp 147–178

    Google Scholar 

  23. Grinko YV, Privalov PL, Venyaminov SY, Kutyshenko VP (1988) Thermodynamic study of the apomyoglobin structure. J Mol Biol 202:127–138

    Article  Google Scholar 

  24. Hargrove MS, Olson JS (1996) The stability of holomyoglobin is determined by heme affinity. Biochemistry 35:11310–11318

    Article  CAS  PubMed  Google Scholar 

  25. Roy A, Sen S, Chakraborti AS (2004) In vitro nonenzymatic glycation enhances the role of myoglobin as a source of oxidative stress. Free Radic Res 38:139–146

    Article  CAS  PubMed  Google Scholar 

  26. Halliwell B, Gutteridge JMC (2000) Free radicals in biology and medicine. Oxford University Press, New York, pp 105–245

    Google Scholar 

  27. Cooper CE, Vollard NB, Choueiri T, Wilson MT (2002) Exercise, free radicals and oxidative stress. Biochem Soc Trans 30:280–285

    Article  CAS  PubMed  Google Scholar 

  28. Tanabashi S, Okuno F, Terakura T, Tsuji T, Wakahara T, Yamada S (1982) A case of diabetic ketoacidosis with a marked raised level of serum creatin phosphokinase (CPK) and myoglobin. Nippon Naika Gakki Zasshi 71:802–809

    CAS  Google Scholar 

  29. Nakano S, Mugikura M, Endoh M, Ogami Y, Isuki MJ (1996) Acute pancreatitis with diabetic ketoacidosis associated with hypermyoglobinemia, acute renal failure and DIC. J Gastroenterol 31:623–626

    Article  CAS  PubMed  Google Scholar 

  30. Rumpf KW, Kaiser H, Grone HJ, Trapp VE, Meinck HM, Goebel HH, Kunze E, Kreuzer H, Schler F (1981) Myoglobinuric renal failure in hyperosmolar diabetic coma. Dtsch Med Wochenscher 106:708–711

    Article  CAS  Google Scholar 

  31. Wittenberg JB, Wittenberg BA (1981) Preparation of myoglobin. Methods Enzymol 76:29–42

    Article  CAS  PubMed  Google Scholar 

  32. Chen YH, Yan JT, Martinez HM (1972) Determination of secondary structure of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11:4120–4131

    Article  CAS  PubMed  Google Scholar 

  33. Quiming NS, Vergel RB, Nicolas MG, Villanueva JA (2005) Interaction of bovine serum albumin and metallothionin. J Health Sci 51:8–15

    Article  CAS  Google Scholar 

  34. Lehrer SS (1971) Solute perturbation of protein fluorescence, the quenching of the trytophanyl fluorescence of model compounds and lysozyme by iodide ion. Biochemistry 10:3257–3263

    Google Scholar 

  35. Olsen KW (1994) Thermal denaturation procedures for hemoglobin. Methods Enzymol 231:514–524

    Article  CAS  PubMed  Google Scholar 

  36. Benesch PE (1994) The stability of the heme-globin linkage measurement of heme exchange. Methods Enzymol 231:496–506

    Article  CAS  PubMed  Google Scholar 

  37. Klatt P, Pfeiffer S, List BM, Lehner D, Glatter O, Bachinger HP, Werner ER, Schmidt K, Mayer B (1996) Characterization of heme-deficient neuronal nitric oxide synthase reveals a role for heme in subunit dimerization and binding of the amino acid substrate and tetrahydrobiopterine. J Biol Chem 271:7338–7342

    Google Scholar 

  38. Geraci G, Parkhurst LJ (1987) Circular dichroism spectra of hemoglobins. Methods Enzymol 76:262–275

    Article  Google Scholar 

  39. Andrade MA, Chacon P, Merelo JJ, Morán F (1993) Evaluation of secondary structure of proteins from UV circular dichroism using an unsupervised learning neural network. Prot Eng 6:383–390

    Article  CAS  Google Scholar 

  40. Aust SD, Chignell CF, Bray TM, Kalyanaraman B, Mason RP (1993) Free radicals in toxicology. Toxicol Appl Pharmacol 120:168–178

    Article  CAS  PubMed  Google Scholar 

  41. Kagi JHR, Schaffer A (1988) Biochemistry of metallothionein. Biochemistry 27:8509–8515

    Article  CAS  PubMed  Google Scholar 

  42. Bismuto E, Gratton E, Lamb DC (2001) Dynamics of ANS binding to tuna apomyoglobin measured with fluorescence correlation spectroscopy. Biophys J 81:3510–3521

    Article  CAS  PubMed  Google Scholar 

  43. Ervin J, Larios E, Osvath S, Schulten K, Gruebele M (2002) What causes hyperfluorescence: folding intermediates or conformationally flexible native states? Biophys J 83:473–483

    Article  CAS  PubMed  Google Scholar 

  44. Eftink MR (1991) Fluorescence quenching. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 2. Plenum Press, New York, pp 473–483

    Google Scholar 

  45. Cussimanio BL, Booth AA, Todd P, Hudson BG, Khalifah RG (2003) Unusual susceptibility of heme proteins to damage by glucose during nonenzymatic glycation. Biophys Chem 105:743–755

    Article  CAS  PubMed  Google Scholar 

  46. Roy M, Sen S, Chakraborti AS (2008) Action of pelargonidin on hyperglycemia and oxidative damage in diabetic rats: Implication for glycation-induced hemoglobin modification. Life Sci 82:1102–1110

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R.S gets a Fellowship from the UGC-UPE scheme of the University of Calcutta. A part of the study was supported by a grant from the Council of Scientific and Industrial Research, New Delhi [grant No. 38(1129)/03/EMR-II]. Thanks are due to Dr. N.S. Chatterjee, National Institute of Cholera and Enteric Diseases, Kolkata for allowing us to use Differential Scanning Calorimeter N-DSCII (Calorimetric Scientific Corporation) and Prof. U. Chaudhuri, Department of Biophysics, Molecular Biology & Bioinformatics, C.U for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay Sankar Chakraborti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, A., Sil, R. & Chakraborti, A.S. Non-enzymatic glycation induces structural modifications of myoglobin. Mol Cell Biochem 338, 105–114 (2010). https://doi.org/10.1007/s11010-009-0343-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-009-0343-7

Keywords

Navigation