Skip to main content

Advertisement

Log in

Gut Microbiome and Multiple Sclerosis

  • Demyelinating Disorders (DN Bourdette and V Yadav, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The commensal flora that lives in the human gut is a unique ecosystem that has evolved over millennia with human beings. The importance of the microbiota in various bodily functions is gradually becoming more apparent. Besides the gut microbiome playing a role in bowel-related disorders, a role in metabolic and autoimmune disorders is becoming clearer. The gut bacteria play a role in educating the immune system and hence may be a player in the development of multiple sclerosis. We examine the different sources of information linking the gut microbiota to multiple sclerosis and examine the future avenues for utilizing the knowledge of the gut microbiome to potentially treat and prevent multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as • Of importance •• Of major importance

  1. Ochoa-Repáraz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol. 2011;69:240–7.

    Article  PubMed  Google Scholar 

  2. Khanna S, Tosh PK. A clinician’s primer on the role of the microbiome in human health and disease. Mayo Clin Proc. 2014;89:107–14.

    Article  PubMed  CAS  Google Scholar 

  3. Compston A, Coles A. Multiple sclerosis. Lancet. 2008;372:1502–17.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang J, Markovic-Plese S, Lacet B, Raus J, Weiner HL, Hafler DA. Increased frequency of interleukin 2-responsive T cells specific for myelin basic protein and proteolipid protein in peripheral blood and cerebrospinal fluid of patients with multiple sclerosis. J Exp Med. 1994;179:973–84.

    Article  PubMed  CAS  Google Scholar 

  5. Quigley EMM. Gut bacteria in health and disease. Gastroenterol Hepatol (N Y). 2013;9:560–9.

    Google Scholar 

  6. Falk PG, Hooper LV, Midtvedt T, Gordon JI. Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev. 1998;62:1157–70.

    PubMed  CAS  PubMed Central  Google Scholar 

  7. Balmer SE, Hanvey LS, Wharton BA. Diet and faecal flora in the newborn: nucleotides. Arch Dis Child Fetal Neonatal Ed. 1994;70:F137–40.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Bennet R, Nord CE. Development of the faecal anaerobic microflora after caesarean section and treatment with antibiotics in newborn infants. Infection. 1987;15:332–6.

    Article  PubMed  CAS  Google Scholar 

  9. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007;5:1556–73.

    Article  CAS  Google Scholar 

  10. O’Toole PW, Claesson MJ. Gut microbiota: changes throughout the lifespan from infancy to elderly. Int Dairy J. 2010;20:281–91.

    Article  Google Scholar 

  11. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473:174–80. Arumugam et al. introduced the concept of gut enterotypes and attempte to correlate these with other host characteristics.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun. 2014;5:3654.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43:3380–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Carroll IM, Ringel-Kulka T, Keku TO, Chang Y-H, Packey CD, Sartor RB, et al. Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. AJP Gastrointest Liver Physiol. 2011;301:G799–807.

    Article  CAS  Google Scholar 

  15. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2011;108(Suppl):4615–22. Lee et al. demonstrated that germ-free mice that were resistant to EAE were rendered susceptible by the introduction of segmented filamentous bacteria into their gut microbiome. This phenomenon was mediated through an increased generation of proinflammatory Th17 cells.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–6.

    Article  PubMed  CAS  Google Scholar 

  17. Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol. 2014;49:785–98.

    Article  PubMed  CAS  Google Scholar 

  18. Wong JMW, de Souza R, Kendall CWC, Emam A, Jenkins DJA. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40:235–43.

    Article  PubMed  CAS  Google Scholar 

  19. Säemann MD, Böhmig GA, Osterreicher CH, Burtscher H, Parolini O, Diakos C, et al. Anti-inflammatory effects of sodium butyrate on human monocytes: potent inhibition of IL-12 and up-regulation of IL-10 production. FASEB J. 2000;14:2380–2.

    PubMed  Google Scholar 

  20. Menzel T, Lührs H, Zirlik S, Schauber J, Kudlich T, Gerke T, et al. Butyrate inhibits leukocyte adhesion to endothelial cells via modulation of VCAM-1. Inflamm Bowel Dis. 2004;10:122–8.

    Article  PubMed  Google Scholar 

  21. Zimmerman MA, Singh N, Martin PM, Thangaraju M, Ganapathy V, Waller JL, et al. Butyrate suppresses colonic inflammation through HDAC1-dependent Fas upregulation and Fas-mediated apoptosis of T cells. AJP Gastrointest Liver Physiol. 2012;302:G1405–15.

    Article  CAS  Google Scholar 

  22. Klampfer L, Huang J, Sasazuki T, Shirasawa S, Augenlicht L. Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol Cancer Res. 2003;1:855–62.

    PubMed  CAS  Google Scholar 

  23. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly-Y M, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341:569–73.

    Article  PubMed  CAS  Google Scholar 

  24. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, de Roos P, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature. 2013;504:451–5.

    Article  PubMed  CAS  Google Scholar 

  25. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104:13780–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Rajilić-Stojanović M, Shanahan F, Guarner F, de Vos WM. Phylogenetic analysis of dysbiosis in ulcerative colitis during remission. Inflamm Bowel Dis. 2013;19:481–8.

    Article  PubMed  Google Scholar 

  27. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut. 2013;1–9.

  28. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H, Wu X, et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS One. 2012;7:e26284.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–85.

    PubMed  CAS  PubMed Central  Google Scholar 

  30. Spencer MD, Hamp TJ, Reid RW, Fischer LM, Zeisel SH, Fodor AA. Association between composition of the human gastrointestinal microbiome and development of fatty liver with choline deficiency. Gastroenterology. 2011;140:976–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19:576–85.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014;38:1–12. Wang et al. provided a detailed overview of the interactions between the gut microbiome and the CNS.

    Article  PubMed  Google Scholar 

  34. Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, et al. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem. 2009;57:1013–23.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Chiu IM, Heesters BA, Ghasemlou N, Von Hehn CA, Zhao F, Tran J, et al. Bacteria activate sensory neurons that modulate pain and inflammation. Nature. 2013;501:52–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Mao Y-K, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat Commun. 2013;4:1465.

    Article  PubMed  Google Scholar 

  37. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C. γ-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol. 2012;113:411–7.

    Article  PubMed  CAS  Google Scholar 

  38. Forsythe P, Sudo N, Dinan T, Taylor VH, Bienenstock J. Mood and gut feelings. Brain Behav Immun. 2010;24:9–16.

    Article  PubMed  Google Scholar 

  39. Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558:263–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  40. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701–12.

    Article  PubMed  CAS  Google Scholar 

  41. Walker AW, Duncan SH, Louis P, Flint HJ. Phylogeny, culturing, and metagenomics of the human gut microbiota. Trends Microbiol. 2014;22:267–74.

    Article  PubMed  CAS  Google Scholar 

  42. Schnoes AM, Brown SD, Dodevski I, Babbitt PC. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS Comput Biol. 2009;5:e1000605.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Klaassens ES, de Vos WM, Vaughan EE. Metaproteomics approach to study the functionality of the microbiota in the human infant gastrointestinal tract. Appl Environ Microbiol. 2007;73:1388–92.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. McNulty NP, Yatsunenko T, Hsiao A, Faith JJ, Muegge BD, Goodman AL, et al. The impact of a consortium of fermented milk strains on the gut microbiome of gnotobiotic mice and monozygotic twins. Sci Transl Med. 2011;3:106ra106.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012;18:1185–93.

    PubMed  CAS  Google Scholar 

  46. Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, Burroughs AR, Foureau DM, Haque-Begum S, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183:6041–50.

    Article  PubMed  Google Scholar 

  47. Ochoa-Repáraz J, Mielcarz DW, Haque-Begum S, Kasper LH. Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes. 2010;1:103–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Berer K, Mues M, Koutrolos M, Al Rasbi Z, Boziki M, Johner C, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479:538–41. Berer et al. used a mouse that develops spontaneous EAE to demonstrate that the gut microbiota induces production of CNS autoreactive proinflammatory T cells, which then recruit autoreactive B cells and increase production of antibodies against myelin antigen.

    Article  PubMed  CAS  Google Scholar 

  49. Ochoa-Repáraz J, Mielcarz DW, Wang Y, Begum-Haque S, Dasgupta S, Kasper DL, et al. A polysaccharide from the human commensal Bacteroides fragilis protects against CNS demyelinating disease. Mucosal Immunol. 2010;3:487–95.

    Article  PubMed  Google Scholar 

  50. Round JL, Lee SM, Li J, Tran G, Jabri B, Chatila TA, et al. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science. 2011;332:974–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Rumah KR, Linden J, Fischetti VA, Vartanian T. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One. 2013;8:e76359. Rumah et al. described the identification of a strain of Clostridium perfringens that produces epsilon toxin which could potentially lead to oligodendrocyte damage and be a trigger for an autoimmune reaction against myelin.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Mete A, Garcia J, Ortega J, Lane M, Scholes S, Uzal FA. Brain lesions associated with clostridium perfringens type D epsilon toxin in a Holstein heifer calf. Vet Pathol. 2013;50:765–8.

    Article  PubMed  CAS  Google Scholar 

  53. Dorca-Arévalo J, Soler-Jover A, Gibert M, Popoff MR, Martín-Satué M, Blasi J. Binding of epsilon-toxin from Clostridium perfringens in the nervous system. Vet Microbiol. 2008;131:14–25.

    Article  PubMed  Google Scholar 

  54. Lonchamp E, Dupont J-L, Wioland L, Courjaret R, Mbebi-Liegeois C, Jover E, et al. Clostridium perfringens epsilon toxin targets granule cells in the mouse cerebellum and stimulates glutamate release. PLoS One. 2010;5:e13046.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Finnie JW, Blumbergs PC, Manavis J. Neuronal damage produced in rat brains by Clostridium perfringens type D epsilon toxin. J Comp Pathol. 1999;120:415–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10208737.

    Article  PubMed  CAS  Google Scholar 

  56. Jhangi S, Gandhi R, Glanz B, Cook S, Nejad P, Ward D, et al. Increased Archaea species and changes with therapy in gut microbiome of multiple sclerosis subjects (S24. 001). Neurology. 2014;82(10 Suppl):S24.001.

    Google Scholar 

  57. Blais Lecours P, Marsolais D, Cormier Y, Berberi M, Haché C, Bourdages R, et al. Increased prevalence of Methanosphaera stadtmanae in inflammatory bowel diseases. PLoS One. 2014;9:e87734.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mowry EM, Waubant E, Chehoud C, DeSantis T, Kuczynski J, Warrington J. Gut bacterial populations in multiple sclerosis and in health (P05.106). Neurology. 2012;78(Meet Abstr 1):P05.106.

    Google Scholar 

  59. Piccio L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol. 2008;84:940–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature. 2013;496:518–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Munger KL, Bentzen J, Laursen B, Stenager E, Koch-Henriksen N, Sørensen TIA, et al. Childhood body mass index and multiple sclerosis risk: a long-term cohort study. Mult Scler. 2013;19:1323–9.

    Article  PubMed  Google Scholar 

  63. Langer-Gould A, Brara SM, Beaber BE, Koebnick C. Childhood obesity and risk of pediatric multiple sclerosis and clinically isolated syndrome. Neurology. 2013;80:548–52.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  PubMed  Google Scholar 

  65. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Hintze KJ, Cox JE, Rompato G, Benninghoff AD, Ward RE, Broadbent J, et al. Broad scope method for creating humanized animal models for animal health and disease research through antibiotic treatment and human fecal transfer. Gut Microbes. 2014;5:183–91.

    Article  PubMed  Google Scholar 

  67. Smits LP, Bouter KEC, de Vos WM, Borody TJ, Nieuwdorp M. Therapeutic potential of fecal microbiota transplantation. Gastroenterology. 2013;145:946–53.

    Article  PubMed  Google Scholar 

  68. Grehan MJ, Borody TJ, Leis SM, Campbell J, Mitchell H, Wettstein A. Durable alteration of the colonic microbiota by the administration of donor fecal flora. J Clin Gastroenterol. 2010;44:551–61.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Pavan Bhargava declares he has no conflict of interest.

Ellen M. Mowry has received grants from Teva Neuroscience.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen M. Mowry.

Additional information

This article is part of the Topical Collection on Demyelinating Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhargava, P., Mowry, E.M. Gut Microbiome and Multiple Sclerosis. Curr Neurol Neurosci Rep 14, 492 (2014). https://doi.org/10.1007/s11910-014-0492-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0492-2

Keywords

Navigation