Skip to main content
Log in

Unravelling the Mystery of Pain, Suffering, and Relief With Brain Imaging

  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

In humans, the experience of pain and suffering is conveyed specifically by language. Noninvasive neuroimaging techniques now provide an account of neural activity in the human brain when pain is experienced. Knowledge gleaned from neuroimaging experiments has shaped contemporaneous accounts of pain. Within the biopsychosocial framework, nociception is undoubtedly required for survival, but is neither necessary nor sufficient for the consciousness of pain in humans. Pain emerges from the brain, which also exerts a top-down influence on nociception. In the brains of patients with chronic pain, neuroimaging has revealed subtle but significant structural, functional, and neurochemical abnormalities. Converging evidence suggests that the chronic pain state may arise from dysfunction of the frontal-limbic system. Further research in the clinical pain population will continue to identify neural mechanisms that contribute to the experience and consequence of pain, which may then be targeted therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Campbell LC, Clauw DJ, Keefe FJ: Persistent pain and depression: a biopsychosocial perspective. Biol Psychiatry 2003, 54:399–409.

    Article  PubMed  Google Scholar 

  2. Singer T, Seymour B, O’Doherty J, et al.: Empathy for pain involves the affective but not sensory components of pain. Science 2004, 303:1157–1162.

    Article  PubMed  CAS  Google Scholar 

  3. Loggia ML, Mogil JS, Bushnell MC: Empathy hurts: compassion for another increases both sensory and affective components of pain perception. Pain 2008, 136:168–176.

    Article  PubMed  Google Scholar 

  4. • Danziger N, Faillenot I, Peyron R: Can we share a pain we never felt? Neural correlates of empathy in patients with congenital insensitivity to pain. Neuron 2009, 61:203–212. This interesting study revealed that patients with the congenital insensitivity to pain have empathy for physical pain despite not having, or being able to, experience such pain. They remain capable of taking another’s emotional perspective. Their empathy trait is closely related to cingulo-frontal activity.

  5. Kong J, Gollub RL, Polich G, et al.: A functional magnetic resonance imaging study on the neural mechanisms of hyperalgesic nocebo effect. J Neurosci 2008, 28:13354–13362.

    Article  PubMed  CAS  Google Scholar 

  6. • Boly M, Faymonville ME, Schnakers C, et al.: Perception of pain in the minimally conscious state with PET activation: an observational study. Lancet Neurol 2008, 7:1013–1020. This clinical study demonstrates that the neural substrates for pain can be activated in patients who are minimally conscious, which suggests that such uncommunicative patients can experience pain.

  7. Antognini JF, Buonocore MH, Disbrow EA, Carstens E: Isoflurane anesthesia blunts cerebral responses to noxious and innocuous stimuli: a fMRI study. Life Sci 1997, 61:PL 349–354.

    Google Scholar 

  8. Davis MH, Coleman MR, Absalom AR, et al.: Dissociating speech perception and comprehension at reduced levels of awareness. Proc Natl Acad Sci U S A 2007, 104:16032–16037.

    Article  PubMed  CAS  Google Scholar 

  9. Eger EI 2nd, Saidman LJ, Brandstater B: Minimum alveolar anesthetic concentration: a standard of anesthetic potency. Anesthesiology 1965, 26:756–763.

    Article  PubMed  Google Scholar 

  10. Loeser JD, Treede RD: The Kyoto protocol of IASP Basic Pain Terminology. Pain 2008, 137:473–477.

    Article  PubMed  Google Scholar 

  11. Woolf CJ, Ma Q: Nociceptors: noxious stimulus detectors. Neuron 2007, 55:353–364.

    Article  PubMed  CAS  Google Scholar 

  12. Cox JJ, Reimann F, Nicholas AK, et al.: An SCN9A channelopathy causes congenital inability to experience pain. Nature 2006, 444:894–898.

    Article  PubMed  CAS  Google Scholar 

  13. Nagasako EM, Oaklander AL, Dworkin RH: Congenital insensitivity to pain: an update. Pain 2003, 101:213–219.

    Article  PubMed  Google Scholar 

  14. Porreca F, Ossipov MH, Gebhart GF: Chronic pain and medullary descending facilitation. Trends Neurosci 2002, 25:319–325.

    Article  PubMed  CAS  Google Scholar 

  15. Moulton EA, Pendse G, Morris S, et al.: Capsaicin-induced thermal hyperalgesia and sensitization in the human trigeminal nociceptive pathway: an fMRI study. Neuroimage 2007, 35:1586–1600.

    Article  PubMed  Google Scholar 

  16. Zambreanu L, Wise RG, Brooks JC, et al.: A role for the brainstem in central sensitisation in humans. Evidence from functional magnetic resonance imaging. Pain 2005, 114:397–407.

    Article  PubMed  CAS  Google Scholar 

  17. Lee MC, Zambreanu L, Menon DK, Tracey I: Identifying brain activity specifically related to the maintenance and perceptual consequence of central sensitization in humans. J Neurosci 2008, 28:11642–11649.

    Article  PubMed  CAS  Google Scholar 

  18. IASP: Part III: pain terms, a current list with definitions and notes on usage. In Classification of Chronic Pain. Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms. Edited by Merskey H, Bogduk N: IASP Press; 1994:209–214.

  19. Head H, Holmes G: Sensory disturbances from cerebral lesions. Brain Res 1911, 34:102–254.

    Google Scholar 

  20. Penfield W, Boldrey E: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 1937, 60:389–443.

    Article  Google Scholar 

  21. Ostrowsky K, Magnin M, Ryvlin P, et al.: Representation of pain and somatic sensation in the human insula: a study of responses to direct electrical cortical stimulation. Cereb Cortex 2002, 12:376–385.

    Article  PubMed  Google Scholar 

  22. Mazzola L, Isnard J, Peyron R, et al.: Somatotopic organization of pain responses to direct electrical stimulation of the human insular cortex. Pain 2009, 146:99–104.

    Article  PubMed  CAS  Google Scholar 

  23. Berthier M, Starkstein S, Leiguarda R: Asymbolia for pain: a sensory-limbic disconnection syndrome. Ann Neurol 1988, 24:41–49.

    Article  PubMed  CAS  Google Scholar 

  24. Starr CJ, Sawaki L, Wittenberg GF, et al.: Roles of the insular cortex in the modulation of pain: insights from brain lesions. J Neurosci 2009, 29:2684–2694.

    Article  PubMed  CAS  Google Scholar 

  25. •• Tracey I, Mantyh PW: The cerebral signature for pain perception and its modulation. Neuron 2007, 55:377–391. This comprehensive review emphasizes the paramount role of the brain for pain in humans.

  26. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK: Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005, 9:463–484.

    Article  PubMed  Google Scholar 

  27. Craig AD: Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 2003, 26:1–30.

    Article  PubMed  CAS  Google Scholar 

  28. Brooks JC, Zambreanu L, Godinez A, et al.: Somatotopic organisation of the human insula to painful heat studied with high resolution functional imaging. Neuroimage 2005, 27:201–209.

    Article  PubMed  CAS  Google Scholar 

  29. Raij TT, Numminen J, Narvanen S, et al.: Brain correlates of subjective reality of physically and psychologically induced pain. Proc Natl Acad Sci U S A 2005, 102:2147–2151.

    Article  PubMed  CAS  Google Scholar 

  30. Albanese MC, Duerden EG, Rainville P, Duncan GH: Memory traces of pain in human cortex. J Neurosci 2007, 27:4612–4620.

    Article  PubMed  CAS  Google Scholar 

  31. Craig AD: How do you feel–now? The anterior insula and human awareness. Nat Rev Neurosci 2009, 10:59–70.

    Article  PubMed  CAS  Google Scholar 

  32. Fields HL, Basbaum AI, Heinricher MM: Central nervous system mechanisms of pain modulation. In Wall and Melzack’s Textbook of Pain. Edited by McMahon SB, Koltzenburg M. Philadelphia: Elsevier; 2006:125–142.

    Google Scholar 

  33. Brooks JC, Nurmikko TJ, Bimson WE, et al.: fMRI of thermal pain: effects of stimulus laterality and attention. Neuroimage 2002, 15:293–301.

    Article  PubMed  Google Scholar 

  34. Kong J, White NS, Kwong KK, et al.: Using fMRI to dissociate sensory encoding from cognitive evaluation of heat pain intensity. Hum Brain Mapp 2006, 27:715–721.

    Article  PubMed  Google Scholar 

  35. Frot M, Mauguiere F: Dual representation of pain in the operculo-insular cortex in humans. Brain 2003, 126:438–450.

    Article  PubMed  Google Scholar 

  36. • Frot M, Mauguiere F, Magnin M, Garcia-Larrea L: Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J Neurosci 2008, 28:944–952. This study employed intracortical electrode recordings in awake humans to demonstrate the responses evoked by noxious laser stimuli, occurred concurrently within the anterior cingulate and somatosensory cortices, which suggests that sensory and affective aspects of pain are processed in parallel.

  37. Lee MC, Mouraux A, Iannetti GD: Characterizing the cortical activity through which pain emerges from nociception. J Neurosci 2009, 29:7909–7916.

    Article  PubMed  CAS  Google Scholar 

  38. •• Schurger A, Pereira F, Treisman A, Cohen JD: Reproducibility distinguishes conscious from nonconscious neural representations. Science 2010, 327:97–99. This important study demonstrates that the neural representations of conscious states are characterized not only by the duration and intensity of the neural response to a sensory stimulus, but also by reproducible patterns of such responses across different episodes.

  39. • Ploner M, Lee MC, Wiech K, et al.: Prestimulus functional connectivity determines pain perception in humans. Proc Natl Acad Sci U S A 2010, 107:355–360. This study demonstrates that the emergence of pain from noxious stimulation may be determined by how well coupled insular and brainstem activities are, just prior to the stimulus. Such coupling or functional connectivity depended on trait anxiety, which suggests that personality traits can influence, or be influenced by, baseline connectivity within the descending neural circuitry for pain.

  40. Fair DA, Dosenbach NUF, Church JA, et al.: Development of distinct control networks through segregation and integration. Proc Natl Acad Sci U S A 2007, 104:13507–13512.

    Article  PubMed  CAS  Google Scholar 

  41. Baliki MN, Chialvo DR, Geha PY, et al.: Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 2006, 26:12165–12173.

    Article  PubMed  CAS  Google Scholar 

  42. Raichle ME, Snyder AZ: A default mode of brain function: a brief history of an evolving idea. Neuroimage 2007, 37:1083–1090; discussion 1097–1089.

    Article  PubMed  Google Scholar 

  43. Morcom AM, Fletcher PC: Does the brain have a baseline? Why we should be resisting a rest. Neuroimage 2007, 37:1073–1082.

    Article  Google Scholar 

  44. Greicius M: Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 2008, 21:424–430.

    Article  PubMed  Google Scholar 

  45. Leknes S, Tracey I: A common neurobiology for pain and pleasure. Nat Rev Neurosci 2008, 9:314–320.

    Article  PubMed  CAS  Google Scholar 

  46. Berridge KC, Kringelbach ML: Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology 2008, 199:457–480.

    Article  PubMed  CAS  Google Scholar 

  47. Seymour B, O’Doherty JP, Koltzenburg M, et al.: Opponent appetitive-aversive neural processes underlie predictive learning of pain relief. Nat Neurosci 2005, 8:1234–1240.

    Article  PubMed  CAS  Google Scholar 

  48. •• Takahashi H, Kato M, Matsuura M, et al.: When your gain is my pain and your pain is my gain: neural correlates of envy and schadenfreude. Science 2009, 323:937–939. This study employed fMRI to distinguish between pleasant and unpleasant feelings that generated from social comparisons between self and others. Experimentally induced feelings of envy (unpleasant) and schadenfreude (pleasant) could be differentiated based on neural activations. Unpleasant feelings were accompanied by ACC activation, whereas pleasant feelings activated the ventral striatum activation. The study suggests that pain and reward, regardless of whether they originate physically or from social interaction, engage characteristic and separable neural circuits.

  49. Neugebauer V, Li W, Bird GC, Han JS: The amygdala and persistent pain. Neuroscientist 2004, 10:221–234.

    Article  PubMed  Google Scholar 

  50. Carrasquillo Y, Gereau RW: Activation of the extracellular signal-regulated kinase in the amygdala modulates pain perception. J Neurosci 2007, 27:1543–1551.

    Article  PubMed  CAS  Google Scholar 

  51. Bornhovd K, Quante M, Glauche V, et al.: Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain 2002, 125:1326–1336.

    Article  PubMed  CAS  Google Scholar 

  52. Petrovic P, Carlsson K, Petersson KM, et al.: Context-dependent deactivation of the amygdala during pain. J Cogn Neurosci 2004, 16:1289–1301.

    Article  PubMed  Google Scholar 

  53. Petrovic P, Ingvar M, Stone-Elander S, et al.: A PET activation study of dynamic mechanical allodynia in patients with mononeuropathy. Pain 1999, 83:459–470.

    Article  PubMed  CAS  Google Scholar 

  54. Lorenz J, Minoshima S, Casey KL: Keeping pain out of mind: the role of the dorsolateral prefrontal cortex in pain modulation. Brain 2003, 126:1079–1091.

    Article  PubMed  CAS  Google Scholar 

  55. • Seifert F, Bschorer K, De Col R, et al.: Medial prefrontal cortex activity is predictive for hyperalgesia and pharmacological antihyperalgesia. J Neurosci 2009, 29:6167–6175. This study demonstrates an inverse correlation between medial prefrontal cortical activity and extent of experimentally induced hyperalgesia, before and after lidocaine infusion in healthy volunteers. This suggests that the mPFC activity is adaptive—not only in determining the extent of hyperalgesia, but also the efficacy of antihyperalgesic treatment.

  56. Tracey I, Ploghaus A, Gati JS, et al.: Imaging attentional modulation of pain in the periaqueductal gray in humans. J Neurosci 2002, 22:2748–2752.

    PubMed  CAS  Google Scholar 

  57. Bantick SJ, Wise RG, Ploghaus A, et al.: Imaging how attention modulates pain in humans using functional MRI. Brain 2002, 125:310–319.

    Article  PubMed  Google Scholar 

  58. Valet M, Sprenger T, Boecker H, et al.: Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain: an fMRI analysis. Pain 2004, 109:399–408.

    Article  PubMed  Google Scholar 

  59. Wiech K, Kalisch R, Weiskopf N, et al.: Anterolateral prefrontal cortex mediates the analgesic effect of expected and perceived control over pain. J Neurosci 2006, 26:11501–11509.

    Article  PubMed  CAS  Google Scholar 

  60. Wager TD, Davidson ML, Hughes BL, et al.: Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 2008, 59:1037–1050.

    Article  PubMed  CAS  Google Scholar 

  61. Ochsner KN, Gross JJ: Cognitive emotion regulation: insights from social cognitive and affective neuroscience. Curr Dir Psychol Sci 2008, 17:153–158.

    Article  Google Scholar 

  62. Phelps EA, Delgado MR, Nearing KI, LeDoux JE: Extinction learning in humans: role of the amygdala and vmPFC. Neuron 2004, 43:897–905.

    Article  PubMed  CAS  Google Scholar 

  63. Quirk GJ, Garcia R, Gonzalez-Lima F: Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 2006, 60:337–343.

    Article  PubMed  Google Scholar 

  64. • Schiller D, Levy I, Niv Y, et al.: From fear to safety and back: reversal of fear in the human brain. J Neurosci 2008, 28:11517–11525. This study demonstrates that reversing fear of a safety cue that was previously used to predict pain requires activation of the ventromedial prefrontal cortex, which highlights the importance of the structure for emotional regulation.

  65. Breivik H, Collett B, Ventafridda V, et al.: Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 2006, 10:287–333.

    Article  PubMed  Google Scholar 

  66. Stewart WF, Ricci JA, Chee E, et al.: Lost productive time and cost due to common pain conditions in the US workforce. JAMA 2003, 290:2443–2454.

    Article  PubMed  CAS  Google Scholar 

  67. Leeuw M, Goossens ME, Linton SJ, et al.: The fear-avoidance model of musculoskeletal pain: current state of scientific evidence. J Behav Med 2007, 30:77–94.

    Article  PubMed  Google Scholar 

  68. deCharms RC, Maeda F, Glover GH, et al.: Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci U S A 2005, 102:18626–18631.

    Google Scholar 

  69. May A: Chronic pain may change the structure of the brain. Pain 2008, 137:7–15.

    Article  PubMed  Google Scholar 

  70. Pezawas L, Verchinski BA, Mattay VS, et al.: The brain-derived neurotrophic factor val66met polymorphism and variation in human cortical morphology. J Neurosci 2004, 24:10099–10102.

    Article  PubMed  CAS  Google Scholar 

  71. Milad MR, Quinn BT, Pitman RK, et al.: Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc Natl Acad Sci U S A 2005, 102:10706–10711.

    Article  PubMed  CAS  Google Scholar 

  72. Milad MR, Wright CI, Orr SP, et al.: Recall of fear extinction in humans activates the ventromedial prefrontal cortex and hippocampus in concert. Biol Psychiatry 2007, 62:446–454.

    Article  PubMed  Google Scholar 

  73. Mayer EA, Berman S, Suyenobu B, et al.: Differences in brain responses to visceral pain between patients with irritable bowel syndrome and ulcerative colitis. Pain 2005, 115:398–409.

    Article  PubMed  Google Scholar 

  74. Jones AK, Derbyshire SW: Reduced cortical responses to noxious heat in patients with rheumatoid arthritis. Ann Rheum Dis 1997, 56:601–607.

    Article  PubMed  CAS  Google Scholar 

  75. Gundel H, Valet M, Sorg C, et al.: Altered cerebral response to noxious heat stimulation in patients with somatoform pain disorder. Pain 2008, 137:413–421.

    Article  PubMed  CAS  Google Scholar 

  76. Apkarian AV, Thomas PS, Krauss BR, Szeverenyi NM: Prefrontal cortical hyperactivity in patients with sympathetically mediated chronic pain. Neurosci Lett 2001, 311:193–197.

    Article  PubMed  CAS  Google Scholar 

  77. Gracely RH, Geisser ME, Giesecke T, et al.: Pain catastrophizing and neural responses to pain among persons with fibromyalgia. Brain 2004, 127:835–843.

    Article  PubMed  CAS  Google Scholar 

  78. Willoch F, Schindler F, Wester HJ, et al.: Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study. Pain 2004, 108:213–220.

    Article  PubMed  CAS  Google Scholar 

  79. Jones AK, Cunningham VJ, Ha-Kawa S, et al.: Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 1994, 33:909–916.

    Article  PubMed  CAS  Google Scholar 

  80. Jones AK, Watabe H, Cunningham VJ, Jones T: Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 2004, 8:479–485.

    Article  PubMed  CAS  Google Scholar 

  81. Harris RE, Clauw DJ, Scott DJ, et al.: Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci 2007, 27:10000–10006.

    Article  PubMed  CAS  Google Scholar 

  82. Wood PB, Patterson JC 2nd, Sunderland JJ, et al.: Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J Pain 2007, 8:51–58.

    Article  PubMed  CAS  Google Scholar 

  83. Wood PB, Schweinhardt P, Jaeger E, et al.: Fibromyalgia patients show an abnormal dopamine response to pain. Eur J Neurosci 2007, 25:3576–3582.

    Article  PubMed  Google Scholar 

  84. Scott DJ, Heitzeg MM, Koeppe RA, et al.: Variations in the human pain stress experience mediated by ventral and dorsal basal ganglia dopamine activity. J Neurosci 2006, 26:10789–10795.

    Article  PubMed  CAS  Google Scholar 

  85. Apkarian AV, Sosa Y, Sonty S, et al.: Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci 2004, 24:10410–10415.

    Article  PubMed  CAS  Google Scholar 

  86. Grachev ID, Fredrickson BE, Apkarian AV: Abnormal brain chemistry in chronic back pain: an in vivo proton magnetic resonance spectroscopy study. Pain 2000, 89:7–18.

    Article  PubMed  CAS  Google Scholar 

  87. Harris RE, Sundgren PC, Pang Y, et al.: Dynamic levels of glutamate within the insula are associated with improvements in multiple pain domains in fibromyalgia. Arthritis Rheum 2008, 58:903–907.

    Article  PubMed  CAS  Google Scholar 

  88. Banati RB, Cagnin A, Brooks DJ, et al.: Long-term trans-synaptic glial responses in the human thalamus after peripheral nerve injury. Neuroreport 2001, 12:3439–3442.

    Article  PubMed  CAS  Google Scholar 

  89. Pattany PM, Yezierski RP, Widerstrom-Noga EG, et al.: Proton magnetic resonance spectroscopy of the thalamus in patients with chronic neuropathic pain after spinal cord injury. AJNR Am J Neuroradiol 2002, 23:901–905.

    PubMed  Google Scholar 

  90. Fukui S, Matsuno M, Inubushi T, Nosaka S: N-Acetylaspartate concentrations in the thalami of neuropathic pain patients and healthy comparison subjects measured with (1)H-MRS. Magn Reson Imaging 2006, 24:75–79.

    Article  PubMed  CAS  Google Scholar 

  91. Milligan ED, Watkins LR: Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 2009, 10:23–36.

    Article  PubMed  CAS  Google Scholar 

  92. Henning A, Schar M, Kollias SS, et al.: Quantitative magnetic resonance spectroscopy in the entire human cervical spinal cord and beyond at 3 T. Magn Reson Med 2008, 59:1250–1258.

    Article  PubMed  CAS  Google Scholar 

  93. Tracey I, Bushnell MC: How neuroimaging studies have challenged us to rethink: is chronic pain a disease? J Pain 2009, 10:1113–1120.

    Article  PubMed  Google Scholar 

  94. •• Seminowicz DA, Laferriere AL, Millecamps M, et al.: MRI structural brain changes associated with sensory and emotional function in a rat model of long-term neuropathic pain. Neuroimage 2009, 47:1007–1014. This important study demonstrates that subtle structural alterations detected by MRI in the brains of patients with chronic pain also exist in the rodent model of neuropathic pain. Importantly, compared with sham controls, rats with neuropathic lesion, rats had decreased frontal lobe cortex volumes several months after surgery, coincident with the onset of anxiety-like behaviors. The findings in this study await histological confirmation.

  95. Metz AE, Yau HJ, Centeno MV, et al.: Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci U S A 2009, 106:2423–2428.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, M.C., Tracey, I. Unravelling the Mystery of Pain, Suffering, and Relief With Brain Imaging. Curr Pain Headache Rep 14, 124–131 (2010). https://doi.org/10.1007/s11916-010-0103-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11916-010-0103-0

Keywords

Navigation