Skip to main content

Advertisement

Log in

Redox Reactions Induced by Nitrosative Stress Mediate Protein Misfolding and Mitochondrial Dysfunction in Neurodegenerative Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Overstimulation of N-methyl-d-aspartate (NMDA)-type glutamate receptors accounts, at least in part, for excitotoxic neuronal damage, potentially contributing to a wide range of acute and chronic neurologic diseases. Neurodegenerative disorders including Alzheimer’s disease (AD) and Parkinson’s disease (PD), manifest deposits of misfolded or aggregated proteins, and result from synaptic injury and neuronal death. Recent studies have suggested that nitrosative stress due to generation of excessive nitric oxide (NO) can mediate excitotoxicity in part by triggering protein misfolding and aggregation, and mitochondrial fragmentation in the absence of genetic predisposition. S-Nitrosylation, or covalent reaction of NO with specific protein thiol groups, represents a convergent signal pathway contributing to NO-induced protein misfolding and aggregation, compromised dynamics of mitochondrial fission-fusion process, thus leading to neurotoxicity. Here, we review the effect of S-nitrosylation on protein function under excitotoxic conditions, and present evidence suggesting that NO contributes to protein misfolding and aggregation via S-nitrosylating protein-disulfide isomerase or the E3 ubiquitin ligase parkin, and mitochondrial fragmentation through β-amyloid-related S-nitrosylation of dynamin-related protein-1. Moreover, we also discuss that inhibition of excessive NMDA receptor activity by memantine, an uncompetitive/fast off-rate (UFO) drug can ameliorate excessive production of NO, protein misfolding and aggregation, mitochondrial fragmentation, and neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Article  PubMed  CAS  Google Scholar 

  2. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3:205–214

    Article  PubMed  CAS  Google Scholar 

  3. Muchowski PJ (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35:9–12

    Article  PubMed  CAS  Google Scholar 

  4. Emerit J, Edeas M, Bricaire F (2004) Neurodegenerative diseases and oxidative stress. Biomed Pharmacother 58:39–46

    Article  PubMed  CAS  Google Scholar 

  5. Beal MF (2001) Experimental models of Parkinson's disease. Nat Rev Neurosci 2:325–334

    Article  PubMed  CAS  Google Scholar 

  6. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  PubMed  CAS  Google Scholar 

  7. Lipton SA (2006) Paradigm shift in neuroprotection by NMDA receptor blockade: memantine and beyond. Nat Rev Drug Discov 5:160–170

    Article  PubMed  CAS  Google Scholar 

  8. Bredt DS, Hwang PM, Glatt CE, Lowenstein C, Reed RR, Snyder SH (1991) Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351:714–718

    Article  PubMed  CAS  Google Scholar 

  9. Garthwaite J, Charles SL, Chess-Williams R (1988) Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336:385–388

    Article  PubMed  CAS  Google Scholar 

  10. Foster MW, Hess DT, Stamler JS (2009) Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 15:391–404

    Article  PubMed  CAS  Google Scholar 

  11. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6:150–166

    Article  PubMed  CAS  Google Scholar 

  12. Stamler JS, Toone EJ, Lipton SA, Sucher NJ (1997) (S)NO signals: translocation, regulation, and a consensus motif. Neuron 18:691–696

    Article  PubMed  CAS  Google Scholar 

  13. Hoppins S, Lackner L, Nunnari J (2007) The machines that divide and fuse mitochondria. Annu Rev Biochem 76:751–780

    Article  PubMed  CAS  Google Scholar 

  14. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505–518

    Article  PubMed  CAS  Google Scholar 

  15. Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci USA 87:1620–1624

    Article  PubMed  CAS  Google Scholar 

  16. Lipton SA, Choi YB, Pan ZH et al (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364:626–632

    Article  PubMed  CAS  Google Scholar 

  17. Barsoum MJ, Yuan H, Gerencser AA et al (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 25:3900–3911

    Article  PubMed  CAS  Google Scholar 

  18. Cho DH, Nakamura T, Fang J et al (2009) S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324:102–105

    Article  PubMed  CAS  Google Scholar 

  19. Li H, Chen Y, Jones AF et al (2008) Bcl-xL induces Drp1-dependent synapse formation in cultured hippocampal neurons. Proc Natl Acad Sci USA 105:2169–2174

    Article  PubMed  Google Scholar 

  20. Li Z, Okamoto K, Hayashi Y, Sheng M (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119:873–887

    Article  PubMed  CAS  Google Scholar 

  21. Wang X, Su B, Siedlak SL et al (2008) Amyloid-beta overproduction causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci USA 105:19318–19323

    Article  PubMed  Google Scholar 

  22. Westermann B (2009) Nitric oxide links mitochondrial fission to Alzheimer's disease. Sci Signal 2:29

    Google Scholar 

  23. Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663

    Article  PubMed  CAS  Google Scholar 

  24. Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552–1555

    Article  PubMed  CAS  Google Scholar 

  25. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11–22

    Article  PubMed  CAS  Google Scholar 

  26. Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446

    Article  PubMed  CAS  Google Scholar 

  27. Kopito RR, Ron D (2000) Conformational disease. Nat Cell Biol 2:E207–E209

    Article  PubMed  CAS  Google Scholar 

  28. Zhang K, Kaufman RJ (2006) The unfolded protein response: a stress signaling pathway critical for health and disease. Neurology 66:S102–S109

    Article  PubMed  CAS  Google Scholar 

  29. Chung KK, Thomas B, Li X et al (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304:1328–1331

    Article  PubMed  CAS  Google Scholar 

  30. Yao D, Gu Z, Nakamura T et al (2004) Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101:10810–10814

    Article  PubMed  CAS  Google Scholar 

  31. Lipton SA, Nakamura T, Yao D, Shi ZQ, Uehara T, Gu Z (2005) Comment on “S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function”. Science 308:1870, author reply 1870

    Article  PubMed  CAS  Google Scholar 

  32. Uehara T, Nakamura T, Yao D et al (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517

    Article  PubMed  CAS  Google Scholar 

  33. Lipton SA (2007) Pathologically activated therapeutics for neuroprotection. Nat Rev Neurosci 8:803–808

    Article  PubMed  CAS  Google Scholar 

  34. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    PubMed  CAS  Google Scholar 

  35. Papadia S, Stevenson P, Hardingham NR, Bading H, Hardingham GE (2005) Nuclear Ca2+ and the cAMP response element-binding protein family mediate a late phase of activity-dependent neuroprotection. J Neurosci 25:4279–4287

    Article  PubMed  CAS  Google Scholar 

  36. Papadia S, Soriano FX, Leveille F et al (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11:476–487

    Article  PubMed  Google Scholar 

  37. Okamoto SI, Pouladi MA, Talantova M et al (2009) Balance between synaptic versus extrasynaptic NMDA receptor activity influences inclusions and neurotoxicity of mutant huntingtin. Nat Med 15:1407–1413

    Article  PubMed  CAS  Google Scholar 

  38. Ankarcrona M, Dypbukt JM, Bonfoco E et al (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973

    Article  PubMed  CAS  Google Scholar 

  39. Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166

    Article  PubMed  CAS  Google Scholar 

  40. Budd SL, Tenneti L, Lishnak T, Lipton SA (2000) Mitochondrial and extramitochondrial apoptotic signaling pathways in cerebrocortical neurons. Proc Natl Acad Sci USA 97:6161–6166

    Article  PubMed  CAS  Google Scholar 

  41. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Article  PubMed  CAS  Google Scholar 

  42. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    Article  PubMed  CAS  Google Scholar 

  43. Dawson VL, Dawson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88:6368–6371

    Article  PubMed  CAS  Google Scholar 

  44. Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537

    Article  PubMed  CAS  Google Scholar 

  45. Olney JW (1969) Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 164:719–721

    Article  PubMed  CAS  Google Scholar 

  46. Olney JW, Wozniak DF, Farber NB (1997) Excitotoxic neurodegeneration in Alzheimer disease. New hypothesis and new therapeutic strategies. Arch Neurol 54:1234–1240

    PubMed  CAS  Google Scholar 

  47. Chen HS, Lipton SA (2006) The chemical biology of clinically tolerated NMDA receptor antagonists. J Neurochem 97:1611–1626

    Article  PubMed  CAS  Google Scholar 

  48. Abu-Soud HM, Stuehr DJ (1993) Nitric oxide synthases reveal a role for calmodulin in controlling electron transfer. Proc Natl Acad Sci USA 90:10769–10772

    Article  PubMed  CAS  Google Scholar 

  49. Forstermann U, Boissel JP, Kleinert H (1998) Expressional control of the 'constitutive' isoforms of nitric oxide synthase (NOS I and NOS III). Faseb J 12:773–790

    PubMed  CAS  Google Scholar 

  50. Boucher JL, Moali C, Tenu JP (1999) Nitric oxide biosynthesis, nitric oxide synthase inhibitors and arginase competition for l-arginine utilization. Cell Mol Life Sci 55:1015–1028

    Article  PubMed  CAS  Google Scholar 

  51. Groves JT, Wang CC (2000) Nitric oxide synthase: models and mechanisms. Curr Opin Chem Biol 4:687–695

    Article  PubMed  CAS  Google Scholar 

  52. Kolodziejska KE, Burns AR, Moore RH, Stenoien DL, Eissa NT (2005) Regulation of inducible nitric oxide synthase by aggresome formation. Proc Natl Acad Sci USA 102:4854–4859

    Article  PubMed  CAS  Google Scholar 

  53. Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 3:1301–1306

    Article  PubMed  CAS  Google Scholar 

  54. He Y, Imam SZ, Dong Z et al (2003) Role of nitric oxide in rotenone-induced nigro-striatal injury. J Neurochem 86:1338–1345

    Article  PubMed  CAS  Google Scholar 

  55. Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci 7:207–219

    Article  PubMed  CAS  Google Scholar 

  56. Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3:277–287

    Article  PubMed  CAS  Google Scholar 

  57. Isaacs AM, Senn DB, Yuan M, Shine JP, Yankner BA (2006) Acceleration of amyloid beta-peptide aggregation by physiological concentrations of calcium. J Biol Chem 281:27916–27923

    Article  PubMed  CAS  Google Scholar 

  58. Cookson MR (2005) The biochemistry of Parkinson's disease. Annu Rev Biochem 74:29–52

    Article  PubMed  CAS  Google Scholar 

  59. Zhao L, Longo-Guess C, Harris BS, Lee JW, Ackerman SL (2005) Protein accumulation and neurodegeneration in the woozy mutant mouse is caused by disruption of SIL1, a cochaperone of BiP. Nat Genet 37:974–979

    Article  PubMed  CAS  Google Scholar 

  60. McNaught KS, Perl DP, Brownell AL, Olanow CW (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease. Ann Neurol 56:149–162

    Article  PubMed  CAS  Google Scholar 

  61. Auluck PK, Chan HY, Trojanowski JQ, Lee VM, Bonini NM (2002) Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. Science 295:865–868

    Article  PubMed  CAS  Google Scholar 

  62. Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    Article  PubMed  CAS  Google Scholar 

  63. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S (2004) Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431:805–810

    Article  PubMed  CAS  Google Scholar 

  64. Kaganovich D, Kopito R, Frydman J (2008) Misfolded proteins partition between two distinct quality control compartments. Nature 454:1088–1095

    Article  PubMed  CAS  Google Scholar 

  65. O'Dell TJ, Hawkins RD, Kandel ER, Arancio O (1991) Tests of the roles of two diffusible substances in long-term potentiation: evidence for nitric oxide as a possible early retrograde messenger. Proc Natl Acad Sci USA 88:11285–11289

    Article  PubMed  Google Scholar 

  66. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  PubMed  CAS  Google Scholar 

  67. Schuman EM, Madison DV (1994) Locally distributed synaptic potentiation in the hippocampus. Science 263:532–536

    Article  PubMed  CAS  Google Scholar 

  68. Stamler JS, Simon DI, Osborne JA et al (1992) S-nitrosylation of proteins with nitric oxide: synthesis and characterization of biologically active compounds. Proc Natl Acad Sci USA 89:444–448

    Article  PubMed  CAS  Google Scholar 

  69. Lei SZ, Pan ZH, Aggarwal SK et al (1992) Effect of nitric oxide production on the redox modulatory site of the NMDA receptor-channel complex. Neuron 8:1087–1099

    Article  PubMed  CAS  Google Scholar 

  70. Kandel ER, O'Dell TJ (1992) Are adult learning mechanisms also used for development? Science 258:243–245

    Article  PubMed  CAS  Google Scholar 

  71. Benhar M, Forrester MT, Hess DT, Stamler JS (2008) Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320:1050–1054

    Article  PubMed  CAS  Google Scholar 

  72. Nikitovic D, Holmgren A (1996) S-nitrosoglutathione is cleaved by the thioredoxin system with liberation of glutathione and redox regulating nitric oxide. J Biol Chem 271:19180–19185

    Article  PubMed  CAS  Google Scholar 

  73. Romero JM, Bizzozero OA (2008) Intracellular glutathione mediates the denitrosylation of protein nitrosothiols in the rat spinal cord. J Neurosci Res 87:701–709

    Article  CAS  Google Scholar 

  74. Melino G, Bernassola F, Knight RA, Corasaniti MT, Nistico G, Finazzi-Agro A (1997) S-nitrosylation regulates apoptosis. Nature 388:432–433

    Article  PubMed  CAS  Google Scholar 

  75. Tenneti L, D'Emilia DM, Lipton SA (1997) Suppression of neuronal apoptosis by S-nitrosylation of caspases. Neurosci Lett 236:139–142

    Article  PubMed  CAS  Google Scholar 

  76. Dimmeler S, Haendeler J, Nehls M, Zeiher AM (1997) Suppression of apoptosis by nitric oxide via inhibition of interleukin-1beta-converting enzyme (ICE)-like and cysteine protease protein (CPP)-32-like proteases. J Exp Med 185:601–607

    Article  PubMed  CAS  Google Scholar 

  77. Mannick JB, Hausladen A, Liu L et al (1999) Fas-induced caspase denitrosylation. Science 284:651–654

    Article  PubMed  CAS  Google Scholar 

  78. Kim WK, Choi YB, Rayudu PV et al (1999) Attenuation of NMDA receptor activity and neurotoxicity by nitroxyl anion, NO. Neuron 24:461–469

    Article  PubMed  CAS  Google Scholar 

  79. Choi YB, Tenneti L, Le DA et al (2000) Molecular basis of NMDA receptor-coupled ion channel modulation by S-nitrosylation. Nat Neurosci 3:15–21

    Article  PubMed  CAS  Google Scholar 

  80. Gu Z, Kaul M, Yan B et al (2002) S-nitrosylation of matrix metalloproteinases: signaling pathway to neuronal cell death. Science 297:1186–1190

    Article  PubMed  CAS  Google Scholar 

  81. Hara MR, Agrawal N, Kim SF et al (2005) S-nitrosylated GAPDH initiates apoptotic cell death by nuclear translocation following Siah1 binding. Nat Cell Biol 7:665–674

    Article  PubMed  CAS  Google Scholar 

  82. Jaffrey SR, Erdjument-Bromage H, Ferris CD, Tempst P, Snyder SH (2001) Protein S-nitrosylation: a physiological signal for neuronal nitric oxide. Nat Cell Biol 3:193–197

    Article  PubMed  CAS  Google Scholar 

  83. Haendeler J, Hoffmann J, Tischler V, Berk BC, Zeiher AM, Dimmeler S (2002) Redox regulatory and anti-apoptotic functions of thioredoxin depend on S-nitrosylation at cysteine 69. Nat Cell Biol 4:743–749

    Article  PubMed  CAS  Google Scholar 

  84. Sliskovic I, Raturi A, Mutus B (2005) Characterization of the S-denitrosation activity of protein disulfide isomerase. J Biol Chem 280:8733–8741

    Article  PubMed  CAS  Google Scholar 

  85. Stamler JS, Singel DJ, Loscalzo J (1992) Biochemistry of nitric oxide and its redox-activated forms. Science 258:1898–1902

    Article  PubMed  CAS  Google Scholar 

  86. Stamler JS (1994) Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell 78:931–936

    Article  PubMed  CAS  Google Scholar 

  87. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106:675–683

    Article  PubMed  CAS  Google Scholar 

  88. Lipton SA, Choi YB, Takahashi H et al (2002) Cysteine regulation of protein function-as exemplified by NMDA-receptor modulation. Trends Neurosci 25:474–480

    Article  PubMed  CAS  Google Scholar 

  89. Stamler JS, Hausladen A (1998) Oxidative modifications in nitrosative stress. Nat Struct Biol 5:247–249

    Article  PubMed  CAS  Google Scholar 

  90. Houk KN, Hietbrink BN, Bartberger MD et al (2003) Nitroxyl disulfides, novel intermediates in transnitrosation reactions. J Am Chem Soc 125:6972–6976

    Article  PubMed  CAS  Google Scholar 

  91. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–1885

    Article  PubMed  CAS  Google Scholar 

  92. Iadecola C, Zhang F, Casey R, Nagayama M, Ross ME (1997) Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 17:9157–9164

    PubMed  CAS  Google Scholar 

  93. Hantraye P, Brouillet E, Ferrante R et al (1996) Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 2:1017–1021

    Article  PubMed  CAS  Google Scholar 

  94. Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM (1996) Role of neuronal nitric oxide in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci USA 93:4565–4571

    Article  PubMed  CAS  Google Scholar 

  95. Liberatore GT, Jackson-Lewis V, Vukosavic S et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409

    Article  PubMed  CAS  Google Scholar 

  96. Chabrier PE, Demerle-Pallardy C, Auguet M (1999) Nitric oxide synthases: targets for therapeutic strategies in neurological diseases. Cell Mol Life Sci 55:1029–1035

    Article  PubMed  CAS  Google Scholar 

  97. Chen TS, Richie JP Jr, Lang CA (1989) The effect of aging on glutathione and cysteine levels in different regions of the mouse brain. Proc Soc Exp Biol Med 190:399–402

    PubMed  CAS  Google Scholar 

  98. Giasson BI, Duda JE, Murray IV et al (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290:985–989

    Article  PubMed  CAS  Google Scholar 

  99. Reynolds MR, Berry RW, Binder LI (2007) Nitration in neurodegeneration: deciphering the “Hows” “nYs”. Biochemistry 46:7325–7336

    Article  PubMed  CAS  Google Scholar 

  100. Reynolds MR, Reyes JF, Fu Y et al (2006) Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer's disease and other tauopathies. J Neurosci 26:10636–10645

    Article  PubMed  CAS  Google Scholar 

  101. Uversky VN, Yamin G, Munishkina LA et al (2005) Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Res Mol Brain Res 134:84–102

    Article  PubMed  CAS  Google Scholar 

  102. Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  PubMed  CAS  Google Scholar 

  103. Valente EM, Abou-Sleiman PM, Caputo V et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158–1160

    Article  PubMed  CAS  Google Scholar 

  104. Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 276:2045–2047

    Article  PubMed  CAS  Google Scholar 

  105. Bonifati V, Rizzu P, van Baren MJ et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259

    Article  PubMed  CAS  Google Scholar 

  106. Leroy E, Boyer R, Auburger G et al (1998) The ubiquitin pathway in Parkinson's disease. Nature 395:451–452

    Article  PubMed  CAS  Google Scholar 

  107. Paisan-Ruiz C, Jain S, Evans EW et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44:595–600

    Article  PubMed  CAS  Google Scholar 

  108. Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607

    Article  PubMed  CAS  Google Scholar 

  109. Ramirez A, Heimbach A, Grundemann J et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191

    Article  PubMed  CAS  Google Scholar 

  110. Ross CA, Pickart CM (2004) The ubiquitin-proteasome pathway in Parkinson's disease and other neurodegenerative diseases. Trends Cell Biol 14:703–711

    Article  PubMed  CAS  Google Scholar 

  111. Shimura H, Hattori N, Kubo S et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  PubMed  CAS  Google Scholar 

  112. Marin I, Ferrus A (2002) Comparative genomics of the RBR family, including the Parkinson's disease-related gene parkin and the genes of the ariadne subfamily. Mol Biol Evol 19:2039–2050

    PubMed  CAS  Google Scholar 

  113. Farrer M, Chan P, Chen R et al (2001) Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 50:293–300

    Article  PubMed  CAS  Google Scholar 

  114. Sriram SR, Li X, Ko HS et al (2005) Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum Mol Genet 14:2571–2586

    Article  PubMed  CAS  Google Scholar 

  115. Hampe C, Ardila-Osorio H, Fournier M, Brice A, Corti O (2006) Biochemical analysis of Parkinson's disease-causing variants of parkin, an E3 ubiquitin-protein ligase with monoubiquitylation capacity. Hum Mol Genet 15:2059–2075

    Article  PubMed  CAS  Google Scholar 

  116. Matsuda N, Kitami T, Suzuki T, Mizuno Y, Hattori N, Tanaka K (2006) Diverse effects of pathogenic mutations of parkin that catalyze multiple monoubiquitylation in vitro. J Biol Chem 281:3204–3209

    Article  PubMed  CAS  Google Scholar 

  117. Lim KL, Chew KC, Tan JM et al (2005) Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J Neurosci 25:2002–2009

    Article  PubMed  CAS  Google Scholar 

  118. Lim KL, Dawson VL, Dawson TM (2006) Parkin-mediated lysine 63-linked polyubiquitination: a link to protein inclusions formation in Parkinson's and other conformational diseases? Neurobiol Aging 27:524–529

    Article  PubMed  CAS  Google Scholar 

  119. Shimura H, Schlossmacher MG, Hattori N et al (2001) Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science 293:263–269

    Article  PubMed  CAS  Google Scholar 

  120. Chung KK, Zhang Y, Lim KL et al (2001) Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy body formation in Parkinson disease. Nat Med 7:1144–1150

    Article  PubMed  CAS  Google Scholar 

  121. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of parkin. Cell 105:891–902

    Article  PubMed  CAS  Google Scholar 

  122. Zhang Y, Gao J, Chung KK, Huang H, Dawson VL, Dawson TM (2000) Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci USA 97:13354–13359

    Article  PubMed  CAS  Google Scholar 

  123. Staropoli JF, McDermott C, Martinat C, Schulman B, Demireva E, Abeliovich A (2003) Parkin is a component of an SCF-like ubiquitin ligase complex and protects postmitotic neurons from kainate excitotoxicity. Neuron 37:735–749

    Article  PubMed  CAS  Google Scholar 

  124. Corti O, Hampe C, Koutnikova H et al (2003) The p38 subunit of the aminoacyl-tRNA synthetase complex is a Parkin substrate: linking protein biosynthesis and neurodegeneration. Hum Mol Genet 12:1427–1437

    Article  PubMed  CAS  Google Scholar 

  125. Huynh DP, Scoles DR, Nguyen D, Pulst SM (2003) The autosomal recessive juvenile Parkinson disease gene product, parkin, interacts with and ubiquitinates synaptotagmin XI. Hum Mol Genet 12:2587–2597

    Article  PubMed  CAS  Google Scholar 

  126. Ren Y, Zhao J, Feng J (2003) Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci 23:3316–3324

    PubMed  CAS  Google Scholar 

  127. Yamamoto A, Friedlein A, Imai Y, Takahashi R, Kahle PJ, Haass C (2005) Parkin phosphorylation and modulation of its E3 ubiquitin ligase activity. J Biol Chem 280:3390–3399

    Article  PubMed  CAS  Google Scholar 

  128. Imai Y, Soda M, Hatakeyama S et al (2002) CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol Cell 10:55–67

    Article  PubMed  CAS  Google Scholar 

  129. Kalia SK, Lee S, Smith PD et al (2004) BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44:931–945

    Article  PubMed  CAS  Google Scholar 

  130. Fallon L, Belanger CM, Corera AT et al (2006) A regulated interaction with the UIM protein Eps15 implicates parkin in EGF receptor trafficking and PI(3)K-Akt signalling. Nat Cell Biol 8:834–842

    Article  PubMed  CAS  Google Scholar 

  131. Moore DJ, West AB, Dikeman DA, Dawson VL, Dawson TM (2008) Parkin mediates the degradation-independent ubiquitination of Hsp70. J Neurochem 105:1806–1819

    Article  PubMed  CAS  Google Scholar 

  132. Liu Y, Fallon L, Lashuel HA, Liu Z, Lansbury PT Jr (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson's disease susceptibility. Cell 111:209–218

    Article  PubMed  CAS  Google Scholar 

  133. Nishikawa K, Li H, Kawamura R et al (2003) Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun 304:176–183

    Article  PubMed  CAS  Google Scholar 

  134. Choi J, Levey AI, Weintraub ST et al (2004) Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson's and Alzheimer's diseases. J Biol Chem 279:13256–13264

    Article  PubMed  CAS  Google Scholar 

  135. Chung KK, Dawson TM, Dawson VL (2005) Nitric oxide, S-nitrosylation and neurodegeneration. Cell Mol Biol (Noisy-le-grand) 51:247–254

    CAS  Google Scholar 

  136. Gu Z, Nakamura T, Yao D, Shi ZQ, Lipton SA (2005) Nitrosative and oxidative stress links dysfunctional ubiquitination to Parkinson's disease. Cell Death Differ 12:1202–1204

    Article  PubMed  CAS  Google Scholar 

  137. Wang C, Ko HS, Thomas B et al (2005) Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function. Hum Mol Genet 14:3885–3897

    Article  PubMed  CAS  Google Scholar 

  138. Wong ES, Tan JM, Wang C et al (2007) Relative sensitivity of parkin and other cysteine-containing enzymes to stress-induced solubility alterations. J Biol Chem 282:12310–12318

    Article  PubMed  CAS  Google Scholar 

  139. LaVoie MJ, Cortese GP, Ostaszewski BL, Schlossmacher MG (2007) The effects of oxidative stress on parkin and other E3 ligases. J Neurochem 103:2354–2368

    Article  PubMed  CAS  Google Scholar 

  140. LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1214–1221

    Article  PubMed  CAS  Google Scholar 

  141. LaVoie MJ, Hastings TG (1999) Peroxynitrite- and nitrite-induced oxidation of dopamine: implications for nitric oxide in dopaminergic cell loss. J Neurochem 73:2546–2554

    Article  PubMed  CAS  Google Scholar 

  142. Andrews DW, Johnson AE (1996) The translocon: more than a hole in the ER membrane? Trends Biochem Sci 21:365–369

    PubMed  CAS  Google Scholar 

  143. Sidrauski C, Chapman R, Walter P (1998) The unfolded protein response: an intracellular signalling pathway with many surprising features. Trends Cell Biol 8:245–249

    Article  PubMed  CAS  Google Scholar 

  144. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885

    Article  PubMed  CAS  Google Scholar 

  145. Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    Article  PubMed  CAS  Google Scholar 

  146. Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233

    Article  PubMed  CAS  Google Scholar 

  147. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    Article  PubMed  CAS  Google Scholar 

  148. Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355

    Article  PubMed  CAS  Google Scholar 

  149. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107:881–891

    Article  PubMed  CAS  Google Scholar 

  150. Lyles MM, Gilbert HF (1991) Catalysis of the oxidative folding of ribonuclease A by protein disulfide isomerase: dependence of the rate on the composition of the redox buffer. Biochemistry 30:613–619

    Article  PubMed  CAS  Google Scholar 

  151. Edman JC, Ellis L, Blacher RW, Roth RA, Rutter WJ (1985) Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317:267–270

    Article  PubMed  CAS  Google Scholar 

  152. Vuori K, Pihlajaniemi T, Myllyla R, Kivirikko KI (1992) Site-directed mutagenesis of human protein disulphide isomerase: effect on the assembly, activity and endoplasmic reticulum retention of human prolyl 4-hydroxylase in Spodoptera frugiperda insect cells. Embo J 11:4213–4217

    PubMed  CAS  Google Scholar 

  153. Ellgaard L, Ruddock LW (2005) The human protein disulphide isomerase family: substrate interactions and functional properties. EMBO Rep 6:28–32

    Article  PubMed  CAS  Google Scholar 

  154. Gruber CW, Cemazar M, Heras B, Martin JL, Craik DJ (2006) Protein disulfide isomerase: the structure of oxidative folding. Trends Biochem Sci 31:455–464

    Article  PubMed  CAS  Google Scholar 

  155. Tian G, Xiang S, Noiva R, Lennarz WJ, Schindelin H (2006) The crystal structure of yeast protein disulfide isomerase suggests cooperativity between its active sites. Cell 124:61–73

    Article  PubMed  CAS  Google Scholar 

  156. Klappa P, Ruddock LW, Darby NJ, Freedman RB (1998) The b' domain provides the principal peptide-binding site of protein disulfide isomerase but all domains contribute to binding of misfolded proteins. Embo J 17:927–935

    Article  PubMed  CAS  Google Scholar 

  157. Conn KJ, Gao W, McKee A et al (2004) Identification of the protein disulfide isomerase family member PDIp in experimental Parkinson's disease and Lewy body pathology. Brain Res 1022:164–172

    Article  PubMed  CAS  Google Scholar 

  158. Hetz C, Russelakis-Carneiro M, Walchli S et al (2005) The disulfide isomerase Grp58 is a protective factor against prion neurotoxicity. J Neurosci 25:2793–2802

    Article  PubMed  CAS  Google Scholar 

  159. Ushioda R, Hoseki J, Araki K, Jansen G, Thomas DY, Nagata K (2008) ERdj5 is required as a disulfide reductase for degradation of misfolded proteins in the ER. Science 321:569–572

    Article  PubMed  CAS  Google Scholar 

  160. Hu BR, Martone ME, Jones YZ, Liu CL (2000) Protein aggregation after transient cerebral ischemia. J Neurosci 20:3191–3199

    PubMed  CAS  Google Scholar 

  161. Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16:653–662

    Article  PubMed  CAS  Google Scholar 

  162. Atkin JD, Farg MA, Turner BJ et al (2006) Induction of the unfolded protein response in familial amyotrophic lateral sclerosis and association of protein-disulfide isomerase with superoxide dismutase 1. J Biol Chem 281:30152–30165

    Article  PubMed  CAS  Google Scholar 

  163. Tanaka S, Uehara T, Nomura Y (2000) Up-regulation of protein-disulfide isomerase in response to hypoxia/brain ischemia and its protective effect against apoptotic cell death. J Biol Chem 275:10388–10393

    Article  PubMed  CAS  Google Scholar 

  164. Ko HS, Uehara T, Nomura Y (2002) Role of ubiquilin associated with protein-disulfide isomerase in the endoplasmic reticulum in stress-induced apoptotic cell death. J Biol Chem 277:35386–35392

    Article  PubMed  CAS  Google Scholar 

  165. Gotoh T, Oyadomari S, Mori K, Mori M (2002) Nitric oxide-induced apoptosis in RAW 264.7 macrophages is mediated by endoplasmic reticulum stress pathway involving ATF6 and CHOP. J Biol Chem 277:12343–12350

    Article  PubMed  CAS  Google Scholar 

  166. Oyadomari S, Takeda K, Takiguchi M et al (2001) Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA 98:10845–10850

    Article  PubMed  CAS  Google Scholar 

  167. Forrester MT, Benhar M, Stamler JS (2006) Nitrosative stress in the ER: a new role for S-nitrosylation in neurodegenerative diseases. ACS Chem Biol 1:355–358

    Article  PubMed  CAS  Google Scholar 

  168. Xu L, Eu JP, Meissner G, Stamler JS (1998) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237

    Article  PubMed  CAS  Google Scholar 

  169. Tao L, Jiao X, Gao E et al (2006) Nitrative inactivation of thioredoxin-1 and its role in postischemic myocardial apoptosis. Circulation 114:1395–1402

    Article  PubMed  CAS  Google Scholar 

  170. Aracena-Parks P, Goonasekera SA, Gilman CP, Dirksen RT, Hidalgo C, Hamilton SL (2006) Identification of cysteines involved in s-nitrosylation, s-glutathionylation, and oxidation to disulfides in ryanodine receptor type 1. J Biol Chem 281:40354–40368

    Article  PubMed  CAS  Google Scholar 

  171. Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C et al (2005) S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci USA 102:8525–8530

    Article  PubMed  CAS  Google Scholar 

  172. Kakimura J, Kitamura Y, Takata K et al (2002) Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. Faseb J 16:601–603

    PubMed  CAS  Google Scholar 

  173. Dou F, Netzer WJ, Tanemura K et al (2003) Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci USA 100:721–726

    Article  PubMed  CAS  Google Scholar 

  174. Bossy-Wetzel E, Barsoum MJ, Godzik A, Schwarzenbacher R, Lipton SA (2003) Mitochondrial fission in apoptosis, neurodegeneration and aging. Curr Opin Cell Biol 15:706–716

    Article  PubMed  CAS  Google Scholar 

  175. Chen YJ, Zhang P, Egelman EH, Hinshaw JE (2004) The stalk region of dynamin drives the constriction of dynamin tubes. Nat Struct Mol Biol 11:574–575

    Article  PubMed  CAS  Google Scholar 

  176. Wang G, Moniri NH, Ozawa K, Stamler JS, Daaka Y (2006) Nitric oxide regulates endocytosis by S-nitrosylation of dynamin. Proc Natl Acad Sci USA 103:1295–1300

    Article  PubMed  CAS  Google Scholar 

  177. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM (1999) C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4:815–826

    Article  PubMed  CAS  Google Scholar 

  178. Smirnova E, Griparic L, Shurland DL, van der Bliek AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

    PubMed  CAS  Google Scholar 

  179. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127

    Article  PubMed  CAS  Google Scholar 

  180. Kang-Decker N, Cao S, Chatterjee S et al (2007) Nitric oxide promotes endothelial cell survival signaling through S-nitrosylation and activation of dynamin-2. J Cell Sci 120:492–501

    Article  PubMed  CAS  Google Scholar 

  181. Hansson Petersen CA, Alikhani N, Behbahani H et al (2008) The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci USA 105:13145–13150

    Article  PubMed  Google Scholar 

  182. Yuan H, Gerencser AA, Liot G et al (2007) Mitochondrial fission is an upstream and required event for bax foci formation in response to nitric oxide in cortical neurons. Cell Death Differ 14:462–471

    Article  PubMed  CAS  Google Scholar 

  183. Zhu PP, Patterson A, Stadler J, Seeburg DP, Sheng M, Blackstone C (2004) Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J Biol Chem 279:35967–35974

    Article  PubMed  CAS  Google Scholar 

  184. Low HH, Lowe J (2006) A bacterial dynamin-like protein. Nature 444:766–769

    Article  PubMed  CAS  Google Scholar 

  185. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    Article  PubMed  CAS  Google Scholar 

  186. Ditzler K (1991) Efficacy and tolerability of memantine in patients with dementia syndrome. A double-blind, placebo controlled trial. Arzneimittelforschung 41:773–780

    PubMed  CAS  Google Scholar 

  187. Fleischhacker WW, Buchgeher A, Schubert H (1986) Memantine in the treatment of senile dementia of the Alzheimer type. Prog Neuropsychopharmacol Biol Psychiatry 10:87–93

    Article  PubMed  CAS  Google Scholar 

  188. Parsons CG, Danysz W, Quack G (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharmacology 38:735–767

    Article  PubMed  CAS  Google Scholar 

  189. Chen HS, Pellegrini JW, Aggarwal SK et al (1992) Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 12:4427–4436

    PubMed  CAS  Google Scholar 

  190. Chen HS, Wang YF, Rayudu PV et al (1998) Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 86:1121–1132

    Article  PubMed  CAS  Google Scholar 

  191. Lipton SA (1992) Memantine prevents HIV coat protein-induced neuronal injury in vitro. Neurology 42:1403–1405

    PubMed  CAS  Google Scholar 

  192. Osborne NN (1999) Memantine reduces alterations to the mammalian retina, in situ, induced by ischemia. Vis Neurosci 16:45–52

    Article  PubMed  CAS  Google Scholar 

  193. Lipton SA, Wang YF (1996) NO-related species can protect from focal cerebral ischemia/reperfusion. In: Krieglstein J, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 183–191

    Google Scholar 

  194. Zurakowski D, Vorwerk CK, Gorla M et al (1998) Nitrate therapy may retard glaucomatous optic neuropathy, perhaps through modulation of glutamate receptors. Vision Res 38:1489–1494

    Article  PubMed  CAS  Google Scholar 

  195. Takahashi H, Shin Y, Cho SJ et al (2007) Hypoxia enhances S-nitrosylation-mediated NMDA receptor inhibition via a thiol oxygen sensor motif. Neuron 53:53–64

    Article  PubMed  CAS  Google Scholar 

  196. Wang Y, Eu J, Washburn M et al (2006) The pharmacology of aminoadamantane nitrates. Curr Alzheimer Res 3:201–204

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the MU Start-up fund, the American Heart Association grants 0665051Y and 09SDG2260983, The Dana Foundation, and NIH 5P01 ES016738-02 Consortium (to Z.G.); NIH grants P01 HD29587, R01 EY05477, R01 EY09024, the American Parkinson’s Disease Association, San Diego Chapter, and an Ellison Senior Scholars Award in Aging (to S.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zezong Gu or Stuart A. Lipton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Z., Nakamura, T. & Lipton, S.A. Redox Reactions Induced by Nitrosative Stress Mediate Protein Misfolding and Mitochondrial Dysfunction in Neurodegenerative Diseases. Mol Neurobiol 41, 55–72 (2010). https://doi.org/10.1007/s12035-010-8113-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-010-8113-9

Keywords

Navigation