Skip to main content

Advertisement

Log in

Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene?

  • Review
  • Published:
Tumor Biology

Abstract

The Tumor protein D52 (TPD52) gene was identified nearly 20 years ago through its overexpression in human cancer, and a substantial body of data now strongly supports TPD52 representing a gene amplification target at chromosome 8q21.13. This review updates progress toward understanding the significance of TPD52 overexpression and targeting, both in tumors known to be characterized by TPD52 overexpression/amplification, and those where TPD52 overexpression/amplification has been recently or variably reported. We highlight recent findings supporting microRNA regulation of TPD52 expression in experimental systems and describe progress toward deciphering TPD52’s cellular functions, particularly in cancer cells. Finally, we provide an overview of TPD52’s potential as a cancer biomarker and immunotherapeutic target. These combined studies highlight the potential value of genes such as TPD52, which are overexpressed in many cancer types, but have been relatively understudied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Khleif SN, Doroshow JH, Hait WN, AACR-FDA-NCI Cancer Biomarkers Collaborative. AACR-FDA-NCI Cancer Biomarkers Collaborative consensus report: advancing the use of biomarkers in cancer drug development. Clin Cancer Res. 2010;16:3299–318. doi:10.1158/1078-0432.CCR-10-0880.

    Article  CAS  Google Scholar 

  2. Kern SE. Why your new cancer biomarker may never work: recurrent patterns and remarkable diversity in biomarker failures. Cancer Res. 2012;72:6097–101. doi:10.1158/0008-5472.CAN-12-3232.

    Article  CAS  PubMed Central  Google Scholar 

  3. Edwards AM, Isserlin R, Bader GD, Frye SV, Willson TM, Yu FH. Too many roads not taken. Nature. 2011;470:163–5. doi:10.1038/470163a.

    Article  CAS  Google Scholar 

  4. Cheever MA, Allison JP, Ferris AS, Finn OJ, Hastings BM, Hecht TT, et al. The prioritization of cancer antigens: a national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res. 2009;15:5323–37. doi:10.1158/1078-0432.

    Article  Google Scholar 

  5. Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–13.

    Article  CAS  Google Scholar 

  6. Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA, Golub TR, et al. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature. 2014;505:495–501. doi:10.1038/nature12912.

    Article  CAS  PubMed Central  Google Scholar 

  7. Iyer G, Hanrahan AJ, Milowsky MI, Al-Ahmadie H, Scott SN, Janakiraman M, et al. Genome sequencing identifies a basis for everolimus sensitivity. Science. 2012;338:221. doi:10.1126/science.1226344.

    Article  CAS  PubMed Central  Google Scholar 

  8. Boutros R, Fanayan S, Shehata M, Byrne JA. The tumor protein D52 family: many pieces, many puzzles. Biochem Biophys Res Commun. 2004;325:1115–21.

    Article  CAS  Google Scholar 

  9. Shehata M, Weidenhofer J, Thamotharampillai K, Hardy JR, Byrne JA. Tumor protein D52 overexpression and gene amplification in cancers from a mosaic of microarrays. Crit Rev Oncog. 2008;14:33–55.

    Article  Google Scholar 

  10. Byrne JA, Tomasetto C, Garnier JM, Rouyer N, Mattei MG, Bellocq JP, et al. A screening method to identify genes commonly overexpressed in carcinomas and the identification of a novel complementary DNA sequence. Cancer Res. 1995;55:2896–903.

    CAS  Google Scholar 

  11. Chen SL, Maroulakou IG, Green JE, Romano-Spica V, Modi W, Lautenberger J, et al. Isolation and characterization of a novel gene expressed in multiple cancers. Oncogene. 1996;12:741–51.

    CAS  Google Scholar 

  12. Parente JA, Goldenring JR, Petropoulos AC, Hellman U, Chew CS. Purification, cloning, and expression of a novel, endogenous, calcium-sensitive, 28-kDa phosphoprotein. J Biol Chem. 1996;271:20096–101.

    Article  CAS  Google Scholar 

  13. Groblewski GE, Wishart MJ, Yoshida M, Williams JA. Purification and identification of a 28-kDa calcium-regulated heat-stable protein. A novel secretagogue-regulated phosphoprotein in exocrine pancreas. J Biol Chem. 1996;271:31502–7.

    Article  CAS  Google Scholar 

  14. Proux V, Provot S, Felder-Schmittbuhl M-P, Laugier D, Calothy G, Marx M. Characterization of a leucine zipper-containing protein identified by retroviral insertion in avian neuroretina cells. J Biol Chem. 1996;271:30790–7.

    Article  CAS  Google Scholar 

  15. Shehata M, Bièche I, Boutros R, Weidenhofer J, Fanayan S, Spalding L, et al. Nonredundant functions for tumor protein D52-like proteins support specific targeting of TPD52. Clin Cancer Res. 2008;14:5050–60.

    Article  CAS  Google Scholar 

  16. Tennstedt P, Bölch C, Strobel G, Minner S, Burkhardt L, Grob T, et al. Patterns of TPD52 overexpression in multiple human solid tumor types analyzed by quantitative PCR. Int J Oncol. 2014;44:609–15. doi:10.3892/ijo.2013.2200.

    CAS  Google Scholar 

  17. Roslan N, Bièche I, Bright RK, Lidereau R, Chen Y, Byrne JA. TPD52 represents a survival factor in ERBB2-amplified breast cancer cells. Mol. Carcinog. 2013.

  18. Byrne JA, Chen Y, Martin La Rotta N, Peters GB. Challenges in identifying candidate amplification targets in human cancers: chromosome 8q21 as a case study. Genes Cancer. 2012;3:87–101.

    Article  CAS  PubMed Central  Google Scholar 

  19. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490:61–70.

    Article  Google Scholar 

  20. Aure MR, Steinfeld I, Baumbusch LO, Liestøl K, Lipson D, Nyberg S, et al. Identifying in-trans process associated genes in breast cancer by integrated analysis of copy number and expression data. PLoS ONE. 2013;8:e53014. doi:10.1371/journal.pone.0053014.

    Article  CAS  PubMed Central  Google Scholar 

  21. Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, et al. A refined molecular taxonomy of breast cancer. Oncogene. 2012;31:1196–206.

    Article  CAS  PubMed Central  Google Scholar 

  22. Cornen S, Guille A, Adélaïde J, Addou-Klouche, Finetti P, Saade M-R, et al. Candidate luminal B breast cancer genes identified by genome, gene expression and DNA methylation profiling. PLOS One. 2014. doi:10.1371/journal.pone.0081843.

  23. Wilson KS, Roberts H, Leek R, Harris AL, Geradts J. Differential gene expression patterns in HER2/neu-positive and -negative breast cancer cell lines and tissues. Am J Pathol. 2002;161:1171–85.

    Article  CAS  PubMed Central  Google Scholar 

  24. Landis MD, Seachrist DD, Montanez-Wiscovich ME, Danielpour D, Keri RA. Gene expression profiling of cancer progression reveals intrinsic regulation of transforming growth factor-beta signaling in ErbB2/Neu-induced tumors from transgenic mice. Oncogene. 2005;24:5173–90.

    Article  CAS  PubMed Central  Google Scholar 

  25. Landis MD, Seachrist DD, Abdul-Karim FW, Keri RA. Sustained trophism of the mammary gland is sufficient to accelerate and synchronize development of ErbB2/Neu-induced tumors. Oncogene. 2006;25:3325–34.

    Article  CAS  PubMed Central  Google Scholar 

  26. Whiteaker JR, Zhang H, Zhao L, et al. Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. J Proteome Res. 2007;6:3962–75.

    Article  CAS  Google Scholar 

  27. Chen H, Pimienta G, Gu Y, et al. Proteomic characterization of Her2/neu-overexpressing breast cancer cells. Proteomics. 2010;10:3800–10.

    Article  CAS  Google Scholar 

  28. Kourtidis A, Jain R, Carkner RD, Eifert C, Brosnan MJ, Conklin DS. An RNA interference screen identifies metabolic regulators NR1D1 and PBP as novel survival factors for breast cancer cells with the ERBB2 signature. Cancer Res. 2010;70:1783–92.

    Article  CAS  PubMed Central  Google Scholar 

  29. Haaland CM, Heaphy CM, Butler KS, Fischer EG, Griffith JK, Bisoffi M. Differential gene expression in tumor adjacent histologically normal prostatic tissue indicates field cancerization. Int J Oncol. 2009;35:537–46.

    CAS  Google Scholar 

  30. Ross AE, Marchionni L, Vuica-Ross M, Cheadle C, Fan J, Berman DM, et al. Gene expression pathways of high grade localized prostate cancer. Prostate. 2011;71:1568–77.

    CAS  Google Scholar 

  31. Nakagawa T, Kollmeyer TM, Morlan BW, Anderson SK, Bergstralh EJ, Davis BJ, et al. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PLoS ONE. 2008;3:e2318. doi:10.1371/journal.pone.0002318.

    Article  PubMed Central  Google Scholar 

  32. Liu W, Xie CC, Thomas CY, Kim ST, Lindberg J, Egevad L, et al. Genetic markers associated with early cancer-specific mortality following prostatectomy. Cancer. 2013;119:2405–12. doi:10.1002/cncr.27954.

    Article  CAS  Google Scholar 

  33. Chen SL, Zhang XK, Halverson DO, Byeon MK, Schweinfest CW, Ferris DK, et al. Characterization of human N8 protein. Oncogene. 1997;15:2577–88.

    Article  CAS  Google Scholar 

  34. Rohrbeck A, Neukirchen J, Rosskopf M, Pardillos GG, Geddert H, Schwalen A, et al. Gene expression profiling for molecular distinction and characterization of laser captured primary lung cancers. J Transl Med. 2008;6:69. doi:10.1186/1479-5876-6-69.

    Article  PubMed Central  Google Scholar 

  35. Bangur CS, Switzer A, Fan L, Marton MJ, Meyer MR, Wang T. Identification of genes over-expressed in small cell lung carcinoma using suppression subtractive hybridization and cDNA microarray expression analysis. Oncogene. 2002;21:3814–25.

    Article  CAS  Google Scholar 

  36. Ziv T, Barnea E, Segal H, Sharon R, Beer I, Admon A. Comparative proteomics of small cell lung carcinoma. Cancer Biomark. 2006;2:219–34.

    CAS  Google Scholar 

  37. Boelens MC, van den Berg A, Fehrmann RS, Geerlings M, de Jong WK, te Meerman GJ, et al. Current smoking-specific gene expression signature in normal bronchial epithelium is enhanced in squamous cell lung cancer. J Pathol. 2009;218:182–91. doi:10.1002/path.2520.

    Article  CAS  Google Scholar 

  38. Hanada S, Kakehashi A, Nishiyama N, Wei M, Yamano S, Chung K, et al. Myristoylated alanine-rich C-kinase substrate as a prognostic biomarker in human primary lung squamous cell carcinoma. Cancer Biomark. 2013;13:289–98. doi:10.3233/CBM-130354.

    CAS  Google Scholar 

  39. Zhang H, Liu Q, Zimmerman LJ, Ham AJ, Slebos RJ, Rahman J, et al. Methods for peptide and protein quantitation by liquid chromatography-multiple reaction monitoring mass spectrometry. Mol Cell Proteomics. 2011;10:M110.006593. doi:10.1074/mcp.M110.006593.

    Article  PubMed Central  Google Scholar 

  40. Spira A, Beane JE, Shah V, Steiling K, Liu G, Schembri F, et al. Airway epithelial gene expression in the diagnostic evaluation of smokers with suspect lung cancer. Nat Med. 2007;13:361–6.

    Article  CAS  Google Scholar 

  41. Zhao P, Zhong W, Ying X, Yao B, Yuan Z, Fu J, et al. Comparative proteomic analysis of anti-benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide-transformed and normal human bronchial epithelial G0/G1 cells. Chem Biol Interact. 2010;186:166–73.

    Article  CAS  Google Scholar 

  42. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450:893–8.

    Article  CAS  PubMed Central  Google Scholar 

  43. Marescalco MS, Capizzi C, Condorelli DF, Barresi V. Genome-wide analysis of recurrent copy-number alterations and copy-neutral loss of heterozygosity in head and neck squamous cell carcinoma. J Oral Pathol Med. 2013. doi:10.1111/jop.12087.

    Google Scholar 

  44. Cheng L, Wang P, Yang S, Yang Y, Zhang Q, Zhang W, et al. Identification of genes with a correlation between copy number and expression in gastric cancer. BMC Med Genomics. 2012;5:14. doi:10.1186/1755-8794-5-14.

    Article  PubMed Central  Google Scholar 

  45. Aquino PF, Fischer JS, Neves-Ferreira AG, Perales J, Domont GB, Araujo GD, et al. Are gastric cancer resection margin proteomic profiles more similar to those from controls or tumors? J Proteome Res. 2012;11:5836–42. doi:10.1021/pr300612x.

    CAS  Google Scholar 

  46. Williams TA, Monticone S, Morello F, Liew CC, Mengozzi G, Pilon C, et al. Teratocarcinoma-derived growth factor-1 is upregulated in aldosterone-producing adenomas and increases aldosterone secretion and inhibits apoptosis in vitro. Hypertension. 2010;55:1468–75. doi:10.1161/HYPERTENSIONAHA.110.150318.

    Article  CAS  Google Scholar 

  47. Herbet M, Salomon A, Feige JJ, Thomas M. Acquisition order of Ras and p53 gene alterations defines distinct adrenocortical tumor phenotypes. PLoS Genet. 2012;8:e1002700. doi:10.1371/journal.pgen.1002700.

    Article  CAS  PubMed Central  Google Scholar 

  48. Ozaki T, Paulussen M, Poremba C, Brinkschmidt C, Rerin J, Ahrens S, et al. Genetic imbalances revealed by comparative genomic hybridization in Ewing tumors. Gene Chromosome Cancer. 2001;32:164–71.

    Article  CAS  Google Scholar 

  49. Stock C, Kager L, Fink FM, Gadner H, Ambros PF. Chromosomal regions involved in the pathogenesis of osteosarcomas. Genes Chromosomes Cancer. 2000;28:329–36.

    Article  CAS  Google Scholar 

  50. Monzon FA, Lyons-Weiler M, Buturovic LJ, Rigl CT, Henner WD, Sciulli C, et al. Multicenter validation of a 1,550-gene expression profile for identification of tumor tissue of origin. J Clin Oncol. 2009;27:2503–8. doi:10.1200/JCO.2008.17.9762.

    Article  Google Scholar 

  51. Machado I, López-Guerrero JA, Calabuig-Fariñas S, Hardy JR, Scotlandi K, Picci P, et al. Clinical significance of tumor protein D52 immunostaining in a large series of Ewing’s sarcoma family of tumors. Pediatr Dev Pathol. 2011;14:255–6. doi:10.2350/11-01-0956-LET.1.

    Article  CAS  Google Scholar 

  52. Li G, Cai Z, Zhang Y, Ru M, Ji F. Screening for pathogenesis-related genes of osteosarcoma using gene microarray. Chin J Cancer Biother. 2007;14:428–34.

    CAS  Google Scholar 

  53. Zou C, Shen J, Tang Q, Yang Z, Yin J, Li Z, et al. Cancer-testis antigens expressed in osteosarcoma identified by gene microarray correlate with a poor patient prognosis. Cancer. 2012;118:1845–55. doi:10.1002/cncr.26486.

    Article  CAS  Google Scholar 

  54. Flores RJ, Li Y, Yu A, Shen J, Rao PH, Lau SS, et al. A systems biology approach reveals common metastatic pathways in osteosarcoma. BMC Syst Biol. 2012;6:50. doi:10.1186/1752-0509-6-50.

    Article  PubMed Central  Google Scholar 

  55. Mohseny AB, Machado I, Cai Y, Schaefer KL, Serra M, Hogendoorn PC, et al. Functional characterization of osteosarcoma cell lines provides representative models to study the human disease. Lab Investig. 2011;91:1195–205. doi:10.1038/labinvest.2011.72.

    Article  Google Scholar 

  56. Machado I, Alberghini M, Giner F, Corrigan M, O’Sullivan M, Noguera R, et al. Histopathological characterization of small cell osteosarcoma with immunohistochemistry and molecular genetic support. A study of 10 cases. Histopathology. 2010;57:162–7.

    Article  Google Scholar 

  57. Barbaric D, Byth K, Dalla-Pozza L, Byrne JA. Expression of tumor protein D52-like genes in childhood leukemia at diagnosis: clinical and sample considerations. Leuk Res. 2006;30:1355–63.

    Article  CAS  Google Scholar 

  58. Kang H, Wilson CS, Harvey RC, Chen IM, Murphy MH, Atlas SR, et al. Gene expression profiles predictive of outcome and age in infant acute lymphoblastic leukemia: a Children’s Oncology Group study. Blood. 2012;119:1872–81. doi:10.1182/blood-2011-10-382861.

    Article  CAS  PubMed Central  Google Scholar 

  59. Mattison J, Kool J, Uren AG, de Ridder J, Wessels L, Jonkers J, et al. Novel candidate cancer genes identified by a large-scale cross-species comparative oncogenomics approach. Cancer Res. 2010;70:883–95.

    Article  CAS  PubMed Central  Google Scholar 

  60. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer patterns of somatic copy number alteration. Nat Genet. 2013;45:1134–40. doi:10.1038/ng.2760.

    Article  CAS  Google Scholar 

  61. Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T, et al. Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell. 2013;23:9–22. doi:10.1016/j.ccr.2012.11.006.

    Article  CAS  Google Scholar 

  62. Wang K, Lim HY, Shi S, Lee J, Deng S, Xie T, et al. Genomic landscape of copy number aberrations enables the identification of oncogenic drivers in hepatocellular carcinoma. Hepatology. 2013;58:706–17. doi:10.1002/hep.26402.

    Article  Google Scholar 

  63. March HN, Rust AG, Wright NA, ten Hoeve J, de Ridder J, Eldridge M, et al. Insertional mutagenesis identifies multiple networks of cooperating genes driving intestinal tumorigenesis. Nat Genet. 2011;43:1202–9. doi:10.1038/ng.990.

    Article  CAS  PubMed Central  Google Scholar 

  64. Gottwein E, Corcoran DL, Mukherjee N, Skalsky RL, Hafner M, Nusbaum JD, et al. Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines. Cell Host Microbe. 2011;10:515–26. doi:10.1016/j.chom.2011.09.012.

    Article  CAS  PubMed Central  Google Scholar 

  65. Haecker I, Gay LA, Yang Y, Hu J, Morse AM, McIntyre LM, et al. Ago HITS-CLIP expands understanding of Kaposi’s sarcoma-associated herpesvirus miRNA function in primary effusion lymphomas. PLoS Pathog. 2012;8:e1002884. doi:10.1371/journal.ppat.1002884.

    Article  CAS  PubMed Central  Google Scholar 

  66. Takahashi Y, Forrest AR, Maeno E, Hashimoto T, Daub CO, Yasuda J. MiR-107 and MiR-185 can induce cell cycle arrest in human non-small cell lung cancer cell lines. PLoS ONE. 2009;4:e6677. doi:10.1371/journal.pone.0006677.

    Article  PubMed Central  Google Scholar 

  67. Kaller M, Liffers ST, Oeljeklaus S, Kuhlmann K, Röh S, Hoffmann R, et al. Genome-wide characterization of miR-34a induced changes in protein and mRNA expression by a combined pulsed SILAC and microarray analysis. Mol Cell Proteomics. 2011;10:M111.010462. doi:10.1074/mcp.M111.010462.

    Article  PubMed Central  Google Scholar 

  68. Bader AG. miR-34—a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120. doi:10.3389/fgene.2012.00120.

    Article  CAS  PubMed Central  Google Scholar 

  69. Templin T, Paul S, Amundson SA, Young EF, Barker CA, Wolden SL, et al. Radiation-induced micro-RNA expression changes in peripheral blood cells of radiotherapy patients. Int J Radiat Oncol Biol Phys. 2011;80:549–57. doi:10.1016/j.ijrobp.2010.12.061.

    Article  CAS  PubMed Central  Google Scholar 

  70. Ummanni R, Teller S, Junker H, Zimmermann U, Venz S, Scharf C, et al. Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells. FEBS J. 2008;275:5703–13.

    Article  CAS  Google Scholar 

  71. Zhang H, Wang J, Pang B, Liang RX, Li S, Huang PT, et al. PC-1/PrLZ contributes to malignant progression in prostate cancer. Cancer Res. 2007;67:8906–13.

    Article  CAS  Google Scholar 

  72. Zhang D, He D, Xue Y, Wang R, Wu K, Xie H, et al. PrLZ protects prostate cancer cells from apoptosis induced by androgen deprivation via the activation of Stat3/Bcl-2 pathway. Cancer Res. 2011;71:2193–202.

    Article  CAS  PubMed Central  Google Scholar 

  73. Li L, Zhang D, Zhang L, Zhu G, Sun Y, Wu K, et al. PrLZ expression is associated with the progression of prostate cancer LnCaP cells. Mol Carcinog. 2009;48:432–40.

    Article  CAS  Google Scholar 

  74. Li L, Xie H, Liang L, Gao Y, Zhang D, Fang L, et al. Increased PrLZ-mediated androgen receptor transactivation promotes prostate cancer growth at castration-resistant stage. Carcinogenesis. 2013;34:257–67. doi:10.1093/carcin/bgs337.

    Article  PubMed Central  Google Scholar 

  75. Lewis JD, Payton LA, Whitford JG, Byrne JA, Smith DI, Yang L, et al. Induction of tumorigenesis and metastasis by the murine orthologue of tumor protein D52. Mol Cancer Res. 2007;5:133–44.

    Article  CAS  Google Scholar 

  76. Sullivan KD, Padilla-Just N, Henry RE, Porter CC, Kim J, Tentler JJ, et al. ATM and MET kinases are synthetic lethal with nongenotoxic activation of p53. Nat Chem Biol. 2012;8:646–54. doi:10.1038/nchembio.965.

    Article  CAS  PubMed Central  Google Scholar 

  77. Sims AH, Finnon P, Miller CJ, Bouffler SD, Howell A, Scott D, et al. TPD52 and NFKB1 gene expression levels correlate with G2 chromosomal radiosensitivity in lymphocytes of women with and at risk of hereditary breast cancer. Int J Radiat Biol. 2007;83(6):409–20.

    Article  CAS  Google Scholar 

  78. Niu N, Qin Y, Fridley BL, Hou J, Kalari KR, Zhu M, et al. Radiation pharmacogenomics: a genome-wide association approach to identify radiation response biomarkers using human lymphoblastoid cell lines. Genome Res. 2010;20:1482–92. doi:10.1101/gr.107672.110.

    Article  CAS  PubMed Central  Google Scholar 

  79. Adamson B, Smogorzewska A, Sigoillot FD, King RW, Elledge SJ. A genome-wide homologous recombination screen identifies the RNA-binding protein RBMX as a component of the DNA-damage response. Nat Cell Biol. 2012;14:318–28. doi:10.1038/ncb2426.

    Article  CAS  PubMed Central  Google Scholar 

  80. Chen Y, Kamili A, Hardy JR, Groblewski GE, Khanna KK, Byrne JA. Tumor protein D52 represents a negative regulator of ATM protein levels. Cell Cycle. 2013;12:3083–97. doi:10.4161/cc.26146.

    Article  CAS  Google Scholar 

  81. Kaspar KM, Thomas DD, Taft WB, Takeshita E, Weng N, Groblewski GE. CaM kinase II regulation of CRHSP-28 phosphorylation in cultured mucosal T84 cells. Am J Physiol Gastrointest Liver Physiol. 2003;285:G1300–9.

    CAS  Google Scholar 

  82. Chew CS, Chen X, Zhang H, Berg EA, Zhang H. Calcium/calmodulin-dependent phosphorylation of tumor protein D52 on serine residue 136 may be mediated by CAMK2delta6. Am J Physiol Gastrointest Liver Physiol. 2008;295:G1159–72.

    Article  CAS  PubMed Central  Google Scholar 

  83. Thomas DD, Martin CL, Weng N, Byrne JA, Groblewski GE. Tumor protein D52 expression and Ca2+-dependent phosphorylation modulates lysosomal membrane protein trafficking to the plasma membrane. Am J Physiol Cell Physiol. 2010;298:C725–39.

    Article  CAS  PubMed Central  Google Scholar 

  84. Messenger SW, Thomas DD, Falkowski MA, Byrne JA, Gorelick FS, Groblewski GE. Tumor protein D52 controls trafficking of an apical endolysosomal secretory pathway in pancreatic acinar cells. Am J Physiol Gastrointest Liver Physiol. 2013;305:G439–52.

    Article  CAS  Google Scholar 

  85. Polanski M, Anderson NL. A list of candidate cancer biomarkers for targeted proteomics. Biomark Insights. 2007;1:1–48.

    PubMed Central  Google Scholar 

  86. Whiteaker JR, Zhao L, Anderson L, Paulovich AG. An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics. 2010;9:184–96.

    Article  CAS  PubMed Central  Google Scholar 

  87. Hüttenhain R, Soste M, Selevsek N, Röst H, Sethi A, Carapito C, et al. Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci Transl Med. 2012;4:142ra94. doi:10.1126/scitranslmed.3003989.

    Article  PubMed Central  Google Scholar 

  88. Caron M, Choquet-Kastylevsky G, Joubert-Caron R. Cancer immunomics using autoantibody signatures for biomarker discovery. Mol Cell Proteomics. 2007;6:1115–22.

    Article  CAS  Google Scholar 

  89. Pedersen JW, Wandall HH. Autoantibodies as biomarkers in cancer. Lab Med. 2011;42:623–8.

    Article  Google Scholar 

  90. Scanlan MJ, Gout I, Gordon CM, Williamson B, Stockert E, Gure AO, et al. Humoral immunity to human breast cancer: antigen definition and quantitative analysis of mRNA expression. Cancer Immun. 2001;1:4.

    CAS  Google Scholar 

  91. Anderson KS, Sibani S, Wallstrom G, Qiu J, Mendoza EA, Raphael J, et al. Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J Proteome Res. 2011;10:85–96. doi:10.1021/pr100686b.

    Article  CAS  PubMed Central  Google Scholar 

  92. Wang J, Barker K, Steel J, Park J, Saul J, Festa F, et al. A versatile protein microarray platform enabling antibody profiling against denatured proteins. Proteomics Clin Appl. 2013;7:378–83. doi:10.1002/prca.201200062.

    Article  CAS  PubMed Central  Google Scholar 

  93. Mayer-Sonnenfeld T, Har-Noy M, Lillehei KO, Graner MW. Proteomic analyses of different human tumor-derived chaperone-rich cell lysate (CRCL) anti-cancer vaccines reveal antigen content and strong similarities amongst the vaccines along with a basis for CRCL’s unique structure: CRCL vaccine proteome leads to unique structure. Int J Hyperthermia. 2013;29:520–7. doi:10.3109/02656736.2013.796529.

    Article  CAS  Google Scholar 

  94. Payton LA, Lewis JD, Byrne JA, Bright RK. Vaccination with metastasis-related tumor associated antigen TPD52 and CpG/ODN induces protective tumor immunity. Cancer Immunol Immunother. 2008;57:799–811.

    Article  CAS  Google Scholar 

  95. Bright JD, Schultz HN, Byrne JA, Bright RK. Injection site and regulatory T cells influence durable vaccine-induced tumor immunity to an over-expressed self tumor associated antigen. Oncoimmunology. 2013;2:e25049.

    Article  PubMed Central  Google Scholar 

  96. Lewis JD, Sullivan LA, Byrne JA, de Riese W, Bright RK. Memory and cellular immunity induced by a DNA vaccine encoding self antigen TPD52 administered with soluble GM-CSF. Cancer Immunol Immunother. 2009;58:1337–49.

    Article  CAS  Google Scholar 

  97. Bright JD, Aldrich JF, Byrne JA, Bright RK. Vaccination with the prostate cancer over-expressed tumor self-protein TPD52 elicits protective tumor immunity and a potentially unique subset of CD8+ T cells. Austin J Clin Immunol. 2014, in press.

  98. Mirshahidi S, Kramer VG, Whitney JB, Essono S, Lee S, Dranoff G, et al. Overlapping synthetic peptides encoding TPD52 as breast cancer vaccine in mice: prolonged survival. Vaccine. 2009;27:1825–33.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Drs Rameen Beroukhim [Dana-Faber Cancer Institute, USA], Susan Clark [Garvan Institute of Medical Research, Australia], Joaquin Espinosa [University of Colorado Boulder, USA], Charles Perou [University of North Carolina Chapel Hill, USA], Erdahl Teber [Children’s Medical Research Institute, Australia], and Kai Wang [Pfizer Inc, San Diego, USA] for advice, and Drs Karen Anderson [Arizona State University, USA], Sebastian Fussek and Uwe Zimmermann [University of Greifswald, Germany], and Rolf Renne [University of Florida, USA] for discussions. We also thank past and present group members and external collaborators for their support.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer A. Byrne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byrne, J.A., Frost, S., Chen, Y. et al. Tumor protein D52 (TPD52) and cancer—oncogene understudy or understudied oncogene?. Tumor Biol. 35, 7369–7382 (2014). https://doi.org/10.1007/s13277-014-2006-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-2006-x

Keywords

Navigation