Elsevier

Life Sciences

Volume 51, Issue 23, 1992, Pages 1759-1765
Life Sciences

Current concepts: Therapeutic potential of capsaicin-like molecules
Mechanism of action of capsaicin-like molecules on sensory neurons

https://doi.org/10.1016/0024-3205(92)90045-QGet rights and content

Abstract

Capsaicin produces pain by selectively activating polymodal nociceptive neurons. This involves a membrane depolarization and the opening of a unique, cation-selective, ion channel which can be blocked by ruthenium red. The capsaicin-induced activation is mediated by a specific membrane receptor which can be selectively and competitively antagonised by capsazepine. Repetitive administration of capsaicin produces a desensitization and an inactivation of sensory neurons. Several mechanisms are involved. These include receptor inactivation, block of voltage activated calcium channels, intracellular accumulation of ions leading to osmotic changes and activation of proteolytic enzyme processes. Systemic and topical capsaicin produces a reversible antinociceptive and antiinflammatory action after an initial undesirable algesic effect. Capsaicin analogues, such as olvanil, have similar properties with minimal initial pungency. Systemic capsaicin produces antinociception by activating capsaicin receptors on afferent nerve terminals in the spinal cord. Spinal neurotransmission is subsequently blocked by a prolonged inactivation of sensory neurotransmitter release. Local or topical application of capsaicin blocks C-fibre conduction and inactivates neuropeptide release from peripheral nerve endings. These mechanisms account for localized antinociception and the reduction of neurogenic inflammation respectively.

References (65)

  • M. Fitzgerald

    Pain

    (1983)
  • B. Lynn

    Pain

    (1990)
  • P. Holzer

    Neuroscience

    (1988)
  • C.A. Maggi et al.

    Gen. Pharmacol.

    (1988)
  • D.A. Simone et al.

    Pain

    (1989)
  • W.P. Cheshire et al.

    C.R. Pain

    (1990)
  • J.E. Bernstein et al.

    J. Am. Acad. Dermatol.

    (1987)
  • F.A. Bucci et al.

    J. Ophthalmol.

    (1988)
  • I. Heyman et al.

    Neurosci. Letts.

    (1985)
  • S.J. Marsh et al.

    Neuroscience

    (1987)
  • R.J. Docherty et al.

    Neuroscience

    (1991)
  • A. Dray et al.

    Neurosci. Letts

    (1990)
  • J. Winter et al.

    Neuron

    (1988)
  • R.M. Lindsay et al.

    Neuroscience

    (1989)
  • H.P. Hartung et al.

    Eur. J. Pharmacol.

    (1983)
  • A. Dray et al.

    Neuroscience

    (1989)
  • A.G. Hayes et al.

    Life Sci.

    (1984)
  • A. Szallasi et al.

    Brain Res.

    (1990)
  • A. Szallasi et al.

    Neuroscience

    (1989)
  • J. Winter et al.

    Brain Res.

    (1990)
  • J.N. Wood et al.

    FEBS

    (1990)
  • P. Kenins

    Neurosci Letts

    (1982)
  • U. Petsche et al.

    Brain Res.

    (1983)
  • P.J. Waddell et al.

    Pain

    (1989)
  • G. Jancso et al.

    Neurosci. Letts.

    (1985)
  • R. Gamse et al.

    Brain Res.

    (1982)
  • A.G. Hayes et al.

    Brain Res.

    (1980)
  • A.H. Dickenson et al.

    Eur. J. Pharmacol.

    (1990)
  • A. Dickenson et al.

    Pain

    (1990)
  • W.K. Sietsema et al.

    Life Sci.

    (1988)
  • A. Dray et al.

    Pain

    (1991)
  • J. Szolcsanyi
  • Cited by (0)

    View full text