Skip to main content
Log in

MDR1 Genotype-Related Pharmacokinetics of Digoxin After Single Oral Administration in Healthy Japanese Subjects

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To evaluate the MDR1 genotype frequency in the Japanese population and to study the relationship between the MDR1 genotype and the pharmacokinetics of digoxin after single oral administration in healthy subjects.

Methods. The MDR1 genotype at exon 26 was determined in 114 healthy volunteers by polymerase chain reaction-restriction fragment length polymorphism. The serum concentration-time profile of digoxin was examined after single oral administration at a dose of 0.25 mg.

Results. It was found that 35.1 % (40/114) of subjects were homozygous for the wild-type allele (C/C), 52.6 % (60/114) were compound heterozygotes with a mutant T-allele (C3435T) (C/T), and 12.3 % (14/114) were homozygous for the mutant allele (T/T). There was no effect of gender or age on the distribution. The serum concentration of digoxin after a single oral administration increased rapidly, attaining a steady state in all subjects; however, it was lower in the subjects harboring the T-allele. AUC0-4 h values (±SD) were 4.11 ± 0.57, 3.20 ± 0.49, and 3.27± 0.58 ng h/ml, respectively, with a significant difference between C/C and C/T or T/T.

Conclusions. The serum concentration of digoxin after single oral administration was lower in the subjects harboring a mutant allele (C3435T) at exon 26 of the MDR1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. L. Juliano and V. Ling. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152-162 (1976).

    Google Scholar 

  2. K. Ueda, A. Yoshida, and T. Amachi. Recent progress in P-glycoprotein research. Anti-Cancer Drug Design 14:115-121 (1999).

    Google Scholar 

  3. C. Ramachandran and S. J. Melnick. Multidrug resistance in human tumors—molecular diagnosis and clinical significance. Mol. Diagnosis 4:81-94 (1999).

    Google Scholar 

  4. K. Ueda, D. P. Clark, C. Chen, I. B. Roninson, M. M. Gottesman, and I. Pastan. The human multudrug resistance (mdr1) gene. J. Biol. Chem. 262:505-508 (1987).

    Google Scholar 

  5. K. Ueda, C. Cardarelli, M. M. Gottesman, and I. Pastan. Expression of full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc. Natl. Acad. Sci. USA 84:3004-3008 (1987).

    Google Scholar 

  6. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multdrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84:7735-7738 (1987).

    Google Scholar 

  7. H. Kurihara, H. Suzuki, and Y. Sugiyama. The role of P-glycoprotein and canalicular multispecific organic anion transporter in the hepatobiliary excretion of drugs. J. Pharm. Sci. 87:1025-1040 (1998).

    Google Scholar 

  8. Y. Tanigawara. Role of P-glycoprotein in drug disposition. Ther. Drug Monit. 22:137-140 (2000).

    Google Scholar 

  9. P. Borst, A. H. Schinkel, J. J. M. Smit, E. Wagenaar, L. van Deemter, A. J. Smith, E. W. H. M. Eijdems, F. Baas, and G. J. R. Zaman. Classical and novel forms of multidrug resistance and the physiological functions of P-glycoproteins in mammals. Pharmacol. Ther. 60:289-299 (1993).

    Google Scholar 

  10. J. Hunter and B. H. Hirst. Intestinal secretion of drugs. The role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv. Drug Deliv. Rev. 25:129-157 (1997).

    Google Scholar 

  11. S. Hoffmeyer, O. Burk, O. von Richter, H. P. Arnold, J. Brockmoller, A. Johne, I. Cascorbi, T. Gerloff, I. Roots, M. Eichelbaum, and U. Brinkmann. Functional polymorphisms of the human multidrug-resistance gene: Multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. USA 97:3473-3478 (2000).

    Google Scholar 

  12. B. Greiner, M. Eichelbaum, P. Fritz, H.-P. Kreichgauer, O. von Richer, J. Zundler, and H. K. Kroemer. The role of intestinal P-glycoprotein in the interaction of digoxin and rifampin. J. Clin. Invest. 104:147-153 (1999).

    Google Scholar 

  13. A. Johne, J. Brockmoller, S. Bauer, A. Maurer, M. Langheinrich, and I. Roots. Pharmacokinetic interaction of digoxin with an herbal extract from St. John's wort (Hypericum perforatum). Clin. Pharmacol. Ther. 66:338-345 (1999).

    Google Scholar 

  14. L. Wang, K. Hirayasu, M. Ishizawa, and Y. Kobayashi. Purification of genomic DNA from human whole blood by isopropanol-fractionation with concentrated NaI and SDS. Nucleic Acids Res. 22:1774-1775 (1994).

    Google Scholar 

  15. G. J. Buffone and G. J. Darlington. Isolation of DNA from biological specimens without extraction with phenol. Clin. Chem. 31:164-165 (1985).

    Google Scholar 

  16. G. Koren. Clinical pharmacokinetic significance of the renal tubular secretion of digoxin. Clin. Pharmacokinet. 13:334-343 (1987).

    Google Scholar 

  17. Y. Tanigawara, N. Okamura, M. Hirai, M. Yasuhara, K. Ueda, N. Kioka, T. Komano, and R. Hori. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J. Pharmacol. Exp. Ther. 263:840-845 (1992).

    Google Scholar 

  18. K. Ueda, N. Okamura, M. Hirai, Y. Tanigawara, T. Saeki, N. Kioka, T. Komano, and R. Hori. Human P-glycoprotein transports cortisol, aldosterone, and dexamethasone, but not progesterone. J. Biol. Chem. 267:24248-24252 (1992).

    Google Scholar 

  19. A. H. Schinkel, J. J. M. Smit, O. van Tellingen, J. H. Beijnen, E. Wagenaar, L. van Deemter, C. A. A. M. Mol, M. A. van der Valk, E. C. Robanus-Maandag, H. P. J. te Riele, A. J. M. Berns, and P. Borst. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increases sensitivity to drugs. Cell 77:491-502 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakaeda, T., Nakamura, T., Horinouchi, M. et al. MDR1 Genotype-Related Pharmacokinetics of Digoxin After Single Oral Administration in Healthy Japanese Subjects. Pharm Res 18, 1400–1404 (2001). https://doi.org/10.1023/A:1012244520615

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012244520615

Navigation