Skip to main content
Log in

Dopaminergic Control of Renal Tubular Function in Patients with Compensated Cirrhosis

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

In normal humans, plasma dopamine levels rise during head-out water immersion or saline intravenous infusion. Dopamine inhibits NA+,K+-ATPase activity in the proximal tubule and blunts aldosterone secretion leading to increased diuresis and natriuresis. The aim of this study is to evaluate the role of endogenous dopaminergic activity in the intrarenal sodium handling in patients with compensated liver cirrhosis. We studied nine healthy controls and 12 patients with Child-Pugh A cirrhosis during a normosodic diet for (1) dopaminergic activity, as measured by the incremental aldosterone responses 30 and 60 min after intravenous metoclopramide administration; (2) basal plasma levels of active renin and aldosterone; (3) 4-hr renal clearance of lithium (an index of fluid delivery to the distal tubule), creatinine, sodium, and potassium, first without and then with dopaminergic blockade with intravenous metoclopramide. The patients displayed greater endogenous dopaminergic activity, evidenced by higher incremental aldosterone responses compared with controls (+30 min: 160.2 ± 68.8 vs 83.6 ± 35.2 pg/ml, P < 0.01; +60 min: 140.5 ± 80.3 vs 36.8 ± 39.1 pg/ml, P < 0.01, respectively). In spite of this, patients and controls did not show significantly different basal aldosterone plasma levels, delivery of sodium to the distal nephron, or urinary excretion of sodium. In both groups the dopaminergic blockade with metoclopramide determined no change in sodium and potassium urinary excretion, but it caused a fall of the fluid and sodium delivery from the proximal tubule to the distal nephron among the patients (from 30.7 ± 9.3 to 14.4 ± 4.5 ml/min, P < 0.001; and from 4.25 ± 1.30 to 2.00 ± 0.64 meq/min, P < 0.001, respectively). In this group the natriuresis was maintained due to a reduction of the reabsorbed fraction of the distal sodium delivery (from 97.5 ± 1.9% to 89.8 ± 12.4%, P < 0.05). In conclusions, compensated cirrhotic patients display an increased endogenous dopaminergic activity compared with controls. This function is critical in maintaining the delivery of sodium to the distal nephron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Lee MR: Dopamine and the kidney. Clin Sci 62:439–448, 1982

    Google Scholar 

  2. Goldberg LI: Dopamine: Receptors and clinical applications. Clin Physiol Biochem 3:120–126, 1985

    Google Scholar 

  3. Chapman BJ, Horn NM, Munday KA, Robertson MJ: The actions of dopamine and of sulpiride on regional blood flows in the rat kidney. J Physiol 298:437–452, 1980

    Google Scholar 

  4. Davis BB, Walter MJ, Murdaugh HV: The mechanism of the increase in sodium excretion following dopamine infusion. Proc Soc Exp Biol Med 129:210–213, 1968

    Google Scholar 

  5. Bello-Reuss E, Higashi Y, Kaneda Y: Dopamine decreases fluid reabsorption in straight portions of rabbit proximal tubule. Am J Physiol 242:F634–F640, 1982

    Google Scholar 

  6. Aperia A, Bertorello A, Seri I: Dopamine causes inhibition of Na+,K+-ATPase activity in rat proximal convoluted tubule segments. Am J Physiol 252:F39–F45, 1987

    Google Scholar 

  7. Ortola FV, Seri I, Downes S, Brenner BM, Ballermann BJ: Dopamine1-receptor blockade inhibits ANP-induced phosphaturia and calciuria in rats. Am J Physiol 259:F138–F146, 1990

    Google Scholar 

  8. Eble JN: A proposed mechanism for the depressor effect of dopamine in the anaesthetized dog. J Pharm Exp Ther 145:45–70, 1964

    Google Scholar 

  9. Felder RA, Blecher M, Eisner GM, Jose PA: Cortical tubular and glomerular dopamine receptors in the rat kidney. Am J Physiol 246:F557–F568, 1984

    Google Scholar 

  10. Carey RM, Thorner MO, Ortt EM: Dopaminergic inhibition of metoclopramide-induced aldosterone secretion in man. Dissociation of responses to dopamine and bromocriptine. J Clin Invest 66:10–18, 1980

    Google Scholar 

  11. Krishna GG, Danovitch GM; Beck FWJ, Sowers JR: Dopaminergic mediation of the natriuretic response to volume expansion. J Lab Clin Med 105:214–218, 1985

    Google Scholar 

  12. Malchoff CD, Hughes J, Sen S, Jackson S, Carey RM: Dopamine inhibits the aldosterone response to upright posture. J Clin Endocrinol Metab 63:197–201, 1986

    Google Scholar 

  13. Inglis GC, Kenyon CJ, Hannah JAM, Connell JMC, Ball SG: Does dopamine regulate aldosterone secretion in the rat? Clin Sci 73:93–97, 1987

    Google Scholar 

  14. Dunn MG, Bosmann GH. Peripheral dopamine receptor identification: Properties of a specific dopamine receptor in the rat adrenal zona glomerulosa. Biochem Biophys Res Commun 99:1081–1087, 1981

    Google Scholar 

  15. Bacq Y, Gaudin C, Hadengue A, Roulot D, Braillon A, Moreau R, Lebrec D: Systemic, splanchnic and renal hemodynamic effects of a dopaminergic dose of dopamine in patients with cirrhosis. Hepatology 14:483–487, 1991

    Google Scholar 

  16. Salerno F, Incerti P, Badalamenti S, Lorenzano E, Graziani G, Morganti A, Ghirardi P: Renal and humoral effects of ibopamine, a dopamine agonist, in patients with liver cirrhosis. Arch Intern Med 150:65–69, 1990

    Google Scholar 

  17. Hadengue A, Moreau R, Bacq Y, Gaudin C, Braillon A, Lebrec D: Selective dopamine DA1 stimulation by fenoldopam in cirrhotic patients with ascites: A systemic, splanchnic and renal hemodynamic study. Hepatology 13:111–116, 1991

    Google Scholar 

  18. Bernardi M, De Palma R, Trevisani F, Malatesta R, Baraldini M, Cursaro C, Gasbarrini G. Unaltered dopaminergic modulation of aldosterone secretion in cirrhosis. Clin Sci 74:137–143, 1988

    Google Scholar 

  19. Gaudin C, Braillon A, Selz F, Cuche JL, Lebrec D: Free and conjugated catecholamines in patients with cirrhosis. J Lab Clin Med 115:589–592, 1990

    Google Scholar 

  20. Sansoé G, Ferrari A, Baraldi E, Grisolia C, De Santis MC, Villa E, Manenti F: Endogenous dopaminergic activity in Child-Pugh A cirrhosis: potential role in renal sodium handling and in the maintenance of clinical compensation. Eur J Clin Invest 28:131–137, 1998

    Google Scholar 

  21. Gniadek TC, Grekin RJ, Gross MD, Villareal JZ: Hyper-responsiveness of aldosterone to metoclopramide in aldosteronism. Clin Endocrinol 16:475–481, 1982

    Google Scholar 

  22. Ganguly A, Pratt JH, Weinberger MH, Grim CE, Fineberg NS: Differing effects of metoclopramide and adrenocorticotropin on plasma aldosterone levels in glucocorticoid-suppressible hyperaldosteronism and other forms of hyperaldosteronism. J Clin Endocrinol Metab 57:388–392, 1983

    Google Scholar 

  23. Wu KD, Chen YM, Chu JS, Hung KY, Hsieh TS, Hsieh BS: Zona fasciculata-like cells determine the response of plasma aldosterone to metoclopramide and aldosterone synthase messenger ribonucleic acid level in aldosterone-producing adenoma. J Clin Endocrinol Metab 80:783–789, 1995

    Google Scholar 

  24. Alexander RW, Gill JR, Yamabe H, Lovenberg W, Keiser HR: Effects of dietary sodium and of acute saline infusion on the interrelationship between dopamine excretion and adrenergic activity in man. J Clin Invest 54:194–200, 1974

    Google Scholar 

  25. Krishna GG, Danovitch GM, Sowers JR: Catecholamine responses to central volume expansion produced by head-out water immersion and saline infusion. J Clin Endocrinol Metab 56:998–1002, 1983

    Google Scholar 

  26. Thomsen K: Lithium clearance: A new method for determining proximal and distal tubular reabsorption of sodium and water. Nephron 37:217–223, 1984

    Google Scholar 

  27. Strazzullo P, Iacoviello I, Iacone R, Giorgione N: Use of fractional lithium clearance in clinical and epidemiological investigation: A methodological assessment. Clin Sci 74:651–657, 1988

    Google Scholar 

  28. Pugh RNH, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the esophagus for bleeding esophageal varices. Br J Surg 60:646–649, 1973

    Google Scholar 

  29. Bartels H, Bohmer M: Eine mikromethode zur kreatinibestimmung. Clin Chim Acta 32:81–85, 1971

    Google Scholar 

  30. Thomsen K, Olsen OV: Renal lithium clearance as a measure of the delivery of water and sodium from the proximal tubule in humans. Am J Med Sci 288:158–161, 1984

    Google Scholar 

  31. Boer WH, Koomans HA, Mees EJD: Lithium clearance during paradoxical natriuresis of hypotonic expansion in man. Kidney Int 32:376–381, 1987

    Google Scholar 

  32. SAS Institute: SAS User's guide: statistics. Cary, North Carolina; SAS Institute, 1982, pp 139–199

    Google Scholar 

  33. McDonald RH, Goldberg LI, McNay JL, Tuttle EP: Effect of dopamine in man, augmentation of sodium excretion, glomerular filtration rate and renal blood flow. J Clin Invest 43:1116–1124, 1964

    Google Scholar 

  34. Raftery AT, Johnson RWG: Dopamine pre-treatment in unstable kidney donors. BMJ 1:522, 1979

    Google Scholar 

  35. Lindner A, Cutler RE, Goodman WG, Pansing PA, Kuester R: Synergism of dopamine-furosemide in preventing acute renal failure in the dog. Kidney Int 16:158–166, 1979

    Google Scholar 

  36. Barnardo DE, Baldus WP, Maher FT: Effects of dopamine on renal function in patients with cirrhosis. Gastroenterology 58:524–531, 1970

    Google Scholar 

  37. Bennett WM, Keefe E, Melnyk C, Mahler D, Rosch J, Porter GA: Response to dopamine hydrochloride in the hepato-renal syndrome. Arch Intern Med 135:964–971, 1975

    Google Scholar 

  38. Wilson JR. Dopamine in the hepato-renal syndrome. JAMA 238:2719–2720, 1977

    Google Scholar 

  39. Dinerstein RJ, Vannice J, Henderson RC, Roth LJ, Goldberg LI, Hoffmann PC: Histofluorescence techniques provide evidence for dopamine containing neuronal elements in canine kidney. Science 205:497–499, 1979

    Google Scholar 

  40. Brown MJ, Allison DJ: Renal conversion of plasma dopa to urine dopamine. Br J Clin Pharmacol 12:251–253, 1981

    Google Scholar 

  41. Yoshizumi M, Ishimura Y, Masuda Y, Ohuchi T, Katoh I, Houchi H, Oka M: Physiological significance of plasma sulfoconjugated dopamine: experimental and clinical studies. Hypertens Res 18(suppl 1):S101–S106, 1995

    Google Scholar 

  42. Gordon MB, Moore TJ, Dluhy RG; Williams GH: Dopaminergic modulation of aldosterone responsiveness to angiotensin II with changes in sodium intake. J Clin Endocrinol Metab 56:340–345, 1983

    Google Scholar 

  43. Lieberman FL, Reynolds TB: Plasma volume in cirrhosis of the liver: Its relation to portal hypertension, ascites and renal failure. J Clin Invest 19:312–321, 1994

    Google Scholar 

  44. Wong F, Liu P, Tobe S, Morali G, Blendis L: Central blood volume in cirrhosis: Measurement with radionuclide angiography. Hepatology 19:312–321, 1994

    Google Scholar 

  45. Lewis FW, Adair O, Rector WG Jr: Arterial vasodilatation is not the cause of increased cardiac output in cirrhosis. Gastroenterology 102:1024–1029, 1992

    Google Scholar 

  46. Wilkinson SP, Smith JK, Clarke M, Arroyo V, Richardson J, Moodie H, Williams R: Intrarenal distribution of plasma flow in cirrhosis as measured by transit renography: Relationship with plasma renin activity and sodium and water retention. Clin Sci Mol Med 52:469–475, 1977

    Google Scholar 

  47. Wilkinson SP, Smith JK, Williams R: Changes in plasma renin activity in cirrhosis: A reappraisal based on studies in 67 patients and “low renin” cirrhosis. Hypertension 1:125–129, 1979

    Google Scholar 

  48. Trevisani F, Bernardi M, Gasbarrini A, Tamè MR, Giancane S, Andreone P, Baraldini M, et al: Bed-rest-induced hypernatriuresis in cirrhotic patients without ascites: Does it contribute to maintain “compensation”? J Hepatol 16:190–196, 1992

    Google Scholar 

  49. Rector WG Jr, Adair O, Hossack KF, Raimguet S: Atrial volume in cirrhosis: Relationship to blood volume and plasma concentration of atrial natriuretic factor. Gastroenterology 99:766–770, 1990

    Google Scholar 

  50. Bernardi M, Trevisani F, Santini C, De Palma R, Gasbarrini G: Aldosterone related blood volume expansion in cirrhosis before and during the early phase of ascites formation. Gut 24:761–766, 1983

    Google Scholar 

  51. Wilkinson SP, Williams R: Renin-angiotensin-aldosterone system in cirrhosis. Gut: 21:545–554, 1980

    Google Scholar 

  52. Wernze H, Speck HJ, Muller G: Studies on the activity of the renin—angiotensin—aldosterone system in patients with cirrhosis of the liver. Klin Wochenschr 56:389–397, 1978

    Google Scholar 

  53. D'Arienzo A, Ambrogio G, Di Siervi P, Perna E, Squame G, Mazzacca G: A randomized comparison of metoclopramide and domperidone on plasma aldosterone concentration and on spironolactone-induced diuresis in ascitic cirrhotic patients. Hepatology 5:854–857, 1985

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sansoè, G., Ferrari, A., Baraldi, E. et al. Dopaminergic Control of Renal Tubular Function in Patients with Compensated Cirrhosis. Dig Dis Sci 47, 392–400 (2002). https://doi.org/10.1023/A:1013738626256

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013738626256

Navigation