Skip to main content
Log in

Mice deficient in heparan sulfate 3-O-sulfotransferase-1: Normal hemostasis with unexpected perinatal phenotypes

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Heparan sulfate that contains antithrombin binding sites is designated as anticoagulant heparan sulfate (HSact) since, in vitro, it dramatically enhances the neutralization of coagulation proteases by antithrombin. Endothelial cell production of HSact is controlled by the Hs3st1 gene, which encodes the rate limiting enzyme—heparan sulfate 3-O-sulfotransferase-1 (Hs3st1). It has long been proposed that levels of endothelial HSact may tightly regulate hemostatic tone. This potential in vivo role of HSact was assessed by generating Hs3st1 −/− knockout mice. Hs3st1 −/− and Hs3st1 +/+ mice were evaluated with a variety of methods, capable of detecting altered hemostatic tone. However, both genotypes were indistinguishable. Instead, Hs3st1 −/− mice exhibited lethality on a specific genetic background and also showed intrauterine growth retardation. Neither phenotypes result from a gross coagulopathy. So although this enzyme produces the majority of tissue HSact, Hs3st1 −/− mice do not show an obvious procoagulant phenotype. These results suggest that the bulk of HSact is not essential for normal hemostasis and that hemostatic tone is not tightly regulated by total levels of HSact. Moreover, the unanticipated non-thrombotic phenotypes suggest structure(s) derived from this enzyme might serve additional/alternative biologic roles. Published in 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenberg RD, Lam L, Correlation between structure and function of heparin, Proc Natl Acad Sci USA 76, 1218–22 (1979).

    PubMed  Google Scholar 

  2. Lindahl U, Bäckström G, Thunberg L, Leder IG, Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombinbinding sequence of heparin, Proc Natl Acad Sci USA 77, 6551–5 (1980).

    PubMed  Google Scholar 

  3. Lindahl U, Bäckström G, Thunberg L, The antithrombin-binding sequence in heparin: Identification of an essential 6-O sulfate group, J Biol Chem 258, 9826–30 (1983).

    PubMed  Google Scholar 

  4. Choay J, Petitou M, Lormeau JC, Sinaÿ P, Casu B, Gatti G, Structure-activity relationship in heparin: A synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti-factor Xa activity, Biochem Biophys Res Commun 116, 492–9 (1983).

    PubMed  Google Scholar 

  5. Atha DH, Lormeau JC, Petitou M, Rosenberg RD, Choay J, Contribution of monosaccharide residues in heparin binding to antithrombin III, Biochemistry 24, 6723–9 (1985).

    PubMed  Google Scholar 

  6. Atha DH, Lormeau JC, Petitou M, Rosenberg RD, Choay J, Contribution of 3-O-and 6-O-sulfated glucosamine residues in the heparin-induced conformational change in antithrombin III, Biochemistry 26, 6454–61 (1987).

    PubMed  Google Scholar 

  7. Zhang L, Yoshida K, Liu J, Rosenberg RD, Anticoagulant heparan sulfate precursor structures in F9 embryonal carcinoma cells, J Biol Chem 274, 5681–91 (1999).

    PubMed  Google Scholar 

  8. Damus PS, Hicks M, Rosenberg RD, Anticoagulant action of heparin, Nature 246, 355–7 (1973).

    PubMed  Google Scholar 

  9. Marcum JA, McKenney JB, Galli SJ, Jackman RW, Rosenberg RD, Anticoagulantly active heparin-like molecules from mast celldeficient mice, Am J Physiol 250, H879–H88 (1986).

    PubMed  Google Scholar 

  10. Marcum JA, McKenney JB, Rosenberg RD, The acceleration of thrombin-antithrombin complex formation in rat hindquarters via naturally occurring heparin-like molecules bound to the endothelium, J Clin Invest 74, 341–50 (1984).

    PubMed  Google Scholar 

  11. van Boven HH, Lane DA, Antithrombin and its inherited deficiency states, Seminars in Hematology 34, 188–204 (1997).

    PubMed  Google Scholar 

  12. Rosenberg RD, Vascular-bed-specific hemostasis and hypercoagulable states: Clinical utility of activation peptide assays in predicting thrombotic events in different clinical populations, Thromb Haemost 86, 41–50 (2001).

    PubMed  Google Scholar 

  13. Marcum JA, Rosenberg RD, The biochemistry, cell biology, and pathophysiology of anticoagulantly active heparin-like molecules of the vessel wall. In Heparin, Chemical and Biological Properties: Clinical Applications, edited by Lane DA, Lindahl U (London, Edward Arnold, 1999), pp. 275–94.

    Google Scholar 

  14. de Agostini AI, Watkins SC, Slayter HS, Youssoufian H, Rosenberg RD, Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: Antithrombin binding on cultured endothelial cells and perfused rat aorta, J Cell Biol 111, 1293–304 (1990).

    PubMed  Google Scholar 

  15. Thomas DP, Roberts HR, Hypercoagulability in venous and arterial thrombosis, Ann Intern Med 126, 638–44 (1997).

    PubMed  Google Scholar 

  16. Kojima T, Leone CW, Marchildon GA, Marcum JA, Rosenberg RD, Isolation and characterization of heparan sulfate proteoglycans produced by cloned rat microvascular endothelial cells, J Biol Chem 267, 4859–69 (1992).

    PubMed  Google Scholar 

  17. Marcum JA, Rosenberg RD, Heparinlike molecules with anticoagulant activity are synthesized by cultured endothelial cells, Biochem Biophys Res Commun 126, 365–72 (1985).

    PubMed  Google Scholar 

  18. Marcum JA, Atha DH, Fritze LMS, Nawroth P, Stern D, Rosenberg RD, Cloned bovine aortic endothelial cells synthesize anticoagulantly active heparan sulfate proteoglycan, J Biol Chem 261, 7507–17 (1986).

    PubMed  Google Scholar 

  19. Shworak NW, Shirakawa M, Colliec-Jouault S, Liu J, Mulligan RC, Birinyi LK, Rosenberg RD, Pathway-specific regulation of the synthesis of anticoagulantly active heparan sulfate, J Biol Chem 269, 24941–52 (1994).

    PubMed  Google Scholar 

  20. de Agostini AL, Lau HK, Leone C, Youssoufian H, Rosenberg RD, Cell mutants defective in synthesizing a heparan sulfate proteoglycan with regions of defined monosaccharide sequence, Proc Natl Acad Sci USA 87, 9784–8 (1990).

    PubMed  Google Scholar 

  21. Colliec-Jouault S, Shworak NW, Liu J, de Agostini AI, Rosenberg RD, Characterization of a cell mutant specifically defective in the synthesis of anticoagulantly active heparan sulfate, J Biol Chem 269, 24953–8 (1994).

    PubMed  Google Scholar 

  22. de Agostini AI, Watkins SC, Slater HS, Youssoufian H, Rosenberg RD, Localization of anticoagulantly active heparan sulfate proteoglycans in vascular endothelium: Antithrombin binding on cultured endothelial cells and perfused rat aorta, Journal of Cell Biology 111, 1293–304 (1990).

    PubMed  Google Scholar 

  23. Kojima T, Shworak NW, Rosenberg RD, Molecular cloning and expression of two distinct cDNA encoding heparan sulfate proteoglycan core proteins from a rat endothelial cell line, J Biol Chem 267, 4870–7 (1992).

    PubMed  Google Scholar 

  24. Mertens G, Cassiman JJ, Van den Berghe H, Vermylen J, David G, Cell surface heparan sulfate proteoglycans from human vascular Mice deficient in heparan sulfate 3-O-sulfotransferase-1 361 endothelial cells. Core protein characterization and antithrombin III binding properties, J Biol Chem 267, 20435–43 (1992).

    PubMed  Google Scholar 

  25. Liu J, Shworak NW, Fritze LMS, Edelberg JM, Rosenberg RD, Purification of heparan sulfate D-glucosaminyl 3-O-sulfotransferase, J Biol Chem 271, 27072–82 (1996).

    PubMed  Google Scholar 

  26. Shworak NW, Liu J, Fritze LMS, Schwartz JJ, Zhang L, Logeart D, Rosenberg RD, Molecular cloning and expression of mouse and human cDNAs encoding heparan sulfate D-glucosaminyl 3-O-sulfotransferase, J Biol Chem 272, 28008–19 (1997).

    PubMed  Google Scholar 

  27. Shworak NW, Fritze LMS, Liu J, Butler LD, Rosenberg RD, Cellfree synthesis of anticoagulant heparan sulfate reveals a limiting activity which modifies a nonlimiting precursor pool, J Biol Chem 271, 27063–71 (1996).

    PubMed  Google Scholar 

  28. Shworak NW, Liu J, Petros LM, Zhang L, Kobayashi M, Copeland NG, Jenkins NA, Rosenberg RD, Multiple isoforms of heparan sulfate D-glucosaminyl 3-O-sulfotransferase. Isolation, characterization, and expression of human cDNAs and identification of distinct genomic loci, J Biol Chem 274, 5170–84 (1999).

    PubMed  Google Scholar 

  29. Liu J, Shworak NW, Sinay P, Schwartz JJ, Zhang L, Fritze LM, Rosenberg RD, Expression of heparan sulfate D-glucosaminyl 3-O-sulfotransferase isoforms reveals novel substrate specificities, J Biol Chem 274, 5185–92 (1999).

    PubMed  Google Scholar 

  30. Yabe T, Shukla D, Spear PG, Rosenberg RD, Seeberger PH, Shworak NW, Portable sulphotransferase domain determines sequence specificity of heparan sulphate 3-O-sulphotransferases, Biochem J 359, 235–41 (2001).

    PubMed  Google Scholar 

  31. HajMohammadi S, Enjyoji K, Princivalle M, Christi P, Lech M, Beeler DL, Rayburn H, Schwartz JJ, Barzegar S, de Agostini AI, Post MJ, Rosenberg RD, Shworak NW, Normal levels of anticoagulant heparan sulfate are not essential for normal hemostasis, J Clin Invest in press (2003).

  32. Ishiguro K, Kojima T, Kadomatsu K, Nakayama Y, Takagi A, Suzuki M, Takeda N, Ito M, Yamamoto K, Matsushita T, Kusugami K, Muramatsu T, Saito H, Complete antithrombin deficiency in mice results in embryonic lethality, J Clin Invest 106, 873–8 (2000).

    PubMed  Google Scholar 

  33. Weiler-Guettler H, Christie PD, Beeler DL, Healy AM, Hancock WW, Rayburn H, Edelberg JM, Rosenberg RD, A targeted point mutation in thrombomodulin generates viable mice with a prethrombotic state, J Clin Invest 101, 1983–91 (1998).

    PubMed  Google Scholar 

  34. Christie PD, Edelberg JM, Picard MH, Foulkes AS, Mamuya W, Weiler-Guettler H, Rubin RH, Gilbert P, Rosenberg RD, A murine model of myocardial microvascular thrombosis, J Clin Invest 104, 533–9 (1999).

    PubMed  Google Scholar 

  35. Labarrere CA, Relationship of fibrin deposition in microvasculature to outcomes in cardiac transplantation, Curr Opin Cardiol 14, 133–9 (1999).

    PubMed  Google Scholar 

  36. Lawson CA, Yan SD, Yan SF, Liao H, Zhou YS, Sobel J, Kisiel W, Stern DM, Pinsky DJ, Monocytes and tissue factor promote thrombosis in a murine model of oxygen deprivation, J Clin Invest 99, 1729–38 (1997).

    PubMed  Google Scholar 

  37. Fay WP, Parker AC, Ansari MN, Zheng X, Ginsburg D, Vitronectin inhibits the thrombotic response to arterial injury in mice, Blood 93, 1825–30 (1999).

    PubMed  Google Scholar 

  38. Farrehi PM, Ozaki CK, Carmeliet P, Fay WP, Regulation of arterial thrombolysis by plasminogen activator inhibitor-1 in mice, Circulation 97, 1002–8 (1998).

    PubMed  Google Scholar 

  39. Weiler H, Lindner V, Kerlin B, Isermann BH, Hendrickson SB, Cooley BC, Meh DA, Mosesson MW, Shworak NW, Post MJ, Conway EM, Ulfman LH, von Andrian UH, Weitz JI, Characterization of a mouse model for thrombomodulin deficiency, Arterioscler Thromb Vasc Biol 21, 1531–7 (2001).

    PubMed  Google Scholar 

  40. Segel GB, Francis CA, Anticoagulant proteins in childhood venous and arterial thrombosis: A review, Blood Cells Mol Dis 26, 540–60 (2000).

    PubMed  Google Scholar 

  41. Gandelman R, Simon NG, Spontaneous pup-killing by mice in response to large litters, Dev Psychobiol 11, 235–41 (1978).

    PubMed  Google Scholar 

  42. Kupferminc MJ, Eldor A, Steinman N, Many A, Bar-Am A, Jaffa A, Fait G, Lessing JB, Increased frequency of genetic thrombophilia in women with complications of pregnancy, N Engl J Med 340, 9–13 (1999).

    PubMed  Google Scholar 

  43. Peeters LL, Thrombophilia and fetal growth restriction, Eur J Obstet Gynecol Reprod Biol 95, 202–5 (2001).

    PubMed  Google Scholar 

  44. Evans MI, Schulman JD, Golden L, Mukherjee AB, Superovulation-induced intrauterine growth retardation in mice, Am J Obstet Gynecol 141, 433–5 (1981).

    PubMed  Google Scholar 

  45. Bassan H, Trejo LL, Kariv N, Bassan M, Berger E, Fattal A, Gozes I, Harel S, Experimental intrauterine growth retardation alters renal development, Pediatr Nephrol 15, 192–5 (2000).

    PubMed  Google Scholar 

  46. Lang U, Baker RS, Khoury J, Clark KE, Effects of chronic reduction in uterine blood flowon fetal and placental growth in the sheep, Am J Physiol Regul Integr Comp Physiol 279, R53–9 (2000).

    PubMed  Google Scholar 

  47. Lin CC, Santolaya-Forgas J, Current concepts of fetal growth restriction: Part I. Causes, classification, and pathophysiology, Obstet Gynecol 92, 1044–55 (1998).

    PubMed  Google Scholar 

  48. Redline RW, Pappin A, Fetal thrombotic vasculopathy: The clinical significance of extensive avascular villi, Hum Pathol 26, 80–5 (1995).

    PubMed  Google Scholar 

  49. Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS, 2nd, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD, Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation, Nat Med 5, 1010–7 (1999).

    PubMed  Google Scholar 

  50. Cui J, Eitzman DT, Westrick RJ, Christie PD, Xu ZJ, Yang AY, Purkayastha AA, Yang TL, Metz AL, Gallagher KP, Tyson JA, Rosenberg RD, Ginsburg D, Spontaneous thrombosis in mice carrying the factor V Leiden mutation, Blood 96, 4222–6 (2000).

    PubMed  Google Scholar 

  51. Healy AM, Hancock WW, Christie PD, Rayburn HB, Rosenberg RD, Intravascular coagulation activation in a murine model of thrombomodulin deficiency: Effects of lesion size, age, and hypoxia on fibrin deposition, Blood 92, 4188–97 (1998).

    PubMed  Google Scholar 

  52. Dewerchin M, Hérault J, Wallays G, Moons L, Stalmans I, Collen D, Carmeliet P, Herbert J, Life-threatening thrombosis in mice with targeted Arg47 to Cys mutation of the heparin binding domain of antithrombin, Circ 104(Suppl. 2), A109442 (2001).

    Google Scholar 

  53. Hosseini G, Liu J, de Agostini AI, Characterization and hormonal modulation of anticoagulant heparan sulfate proteoglycans synthesized by rat ovarian granulosa cells, J Biol Chem 271, 22090–9 (1996).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas W. Shworak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shworak, N.W., HajMohammadi, S., de Agostini, A.I. et al. Mice deficient in heparan sulfate 3-O-sulfotransferase-1: Normal hemostasis with unexpected perinatal phenotypes. Glycoconj J 19, 355–361 (2002). https://doi.org/10.1023/A:1025377206600

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025377206600

Navigation