Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term cure of the photosensitivity of murine erythropoietic protoporphyria by preselective gene therapy

Abstract

Definitive cure of an animal model of a human disease by gene transfer into hematopoietic stem cells has not yet been accomplished in the absence of spontaneous in vivo selection for transduced cells. Erythropoietic protoporphyria is a genetic disease in which ferrochelatase is defective. Protoporphyrin accumulates in erythrocytes, leaks into the plasma and results in severe skin photosensitivity. Using a mouse model of erythropoietic protoporphyria, we demonstrate here that ex vivo preselection of hematopoietic stem cells transduced with a polycistronic retrovirus expressing both human ferrochelatase and green fluorescent protein results in complete and long-term correction of skin photosensitivity in all transplanted mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Retroviral vectors.
Figure 2: Southern and northern blot analyses of representative mice 6 months after transplantation.
Figure 3: FACS analysis of circulating RBCs.
Figure 4: Retrovirus-mediated gene transfer of human ferrochelatase cDNA to bone marrow suppresses the skin photosensitivity of EPP mice.

Similar content being viewed by others

References

  1. Mardiney, M. III, et al. Enhanced host defense after gene transfer in the murine p47phox-deficient model of chronic granulomatous disease. Blood 89, 2268–2275 (1997).

    CAS  PubMed  Google Scholar 

  2. Bjorgvinsdottir, H. et al. Retroviral-mediated gene transfer of gp91phox into bone marrow cells rescues defect in host defense against Aspergillus fumigatous in murine X-linked chronic granulomatous disease. Blood 89, 41–48 (1997).

    CAS  PubMed  Google Scholar 

  3. Bunting, K., Sangster, M., Ihle J. & Sorrentino, B. Restoration of lymphocyte function in Janus kinase 3-deficient mice by retroviral-mediated gene transfer. Nature Med. 4, 58– 64 (1998).

    Article  CAS  Google Scholar 

  4. Desnick, R. in Harrison's Principles of Internal Medicine 13th edn. Vol. 1 (eds. Isselbacher, K.J. et al.) 2073 (McGraw-Hill, New York, 1994).

    Google Scholar 

  5. Mathews-Roth, M., Pathak, M., Fitzpatrick, T., Harber, L. & Kass, E. Beta-carotene therapy for erythropoietic protoporphyria and other photosensitivity diseases. Arch. Dermatol. 113, 1229–1232 (1977).

    Article  CAS  Google Scholar 

  6. Boulechfar, S. et al. Ferrochelatase structural mutant (Fechm1Pas) in the house mouse. Genomics 16, 645– 648 (1993).

    Article  CAS  Google Scholar 

  7. Tutois, S. et al. Erythropoietic protoporphyria in the house mouse. A recessive inherited deficiency with anemia, photosensitivity and liver disease. J. Clin. Invest. 88, 1730–1736 (1991).

    Article  CAS  Google Scholar 

  8. Zimmermann, A. Consequences of cholestasis from the pathologist's viewpoint. Schweiz. Med. Wochenschr. 127, 812– 820 (1997).

    CAS  PubMed  Google Scholar 

  9. Perez-Tamayo, R. Cirrhosis of the liver: a reversible disease? Pathol. Annu. 14 183–213 (1979).

    PubMed  Google Scholar 

  10. Markowitz, D., Goff, S. & Bank, A. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62, 1120 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Anderson, W. Human gene therapy. Nature 392, 25– 30 (1998).

    Article  CAS  Google Scholar 

  12. Verma, I. & Somia, N. Gene therapy-promises, problems and prospects. Nature 389, 239– 242 (1997).

    Article  CAS  Google Scholar 

  13. Pawliuk, R., Eaves, C. & Humphries, R. Sustained high-level reconstitution of the hematopoietic system by preselected hematopoietic cells expressing a transduced cell-surface antigen. Hum. Gene Ther. 8, 1595– 1604 (1997).

    Article  CAS  Google Scholar 

  14. Youssoufian, H. Natural gene therapy and the Darwinian legacy. Nature Genet. 13, 255–256 (1996).

    Article  CAS  Google Scholar 

  15. Cheng, L. et al. Sustained gene expression in retrovirally transduced, engrafting human hematopoietic stem cells and their lympho-myeloid progeny. Blood 92, 83–92 (1998).

    CAS  PubMed  Google Scholar 

  16. Conneally, E., Eaves, C. & Humphries, R. Efficient retroviral-mediated gene transfer to human cord blood stem cells with in vivo repopulating potential. Blood 91, 3487–3493 (1998).

    CAS  PubMed  Google Scholar 

  17. Huang, Z. & Yen, T. Role of the hepatitis B virus posttranscriptional regulatory element in export of intronless transcripts. Mol. Cell. Biol. 15, 3864–3869 (1995).

    Article  CAS  Google Scholar 

  18. Persons, D. et al. Retroviral-mediated transfer of the green fluorescent protein gene into murine hematopoietic cells facilitates scoring and selection of transduced progenitors in vitro and identification of genetically modified cells in vivo. Blood 90, 1777– 1786 (1997).

    CAS  PubMed  Google Scholar 

  19. Leboulch, P. et al. Mutagenesis of retroviral vectors transducing human beta-globin gene and beta-globin locus control region derivatives results in stable transmission of an active transcriptional structure. EMBO J. 13, 3065–3076 (1994).

    Article  CAS  Google Scholar 

  20. Raftopoulos, H., Ward, M. & Bank, A. Long-term transfer and expression of the human beta-globin gene in a mouse transplant model. Blood 90, 3414– 3422 (1997).

    CAS  PubMed  Google Scholar 

  21. Torres de, I., Demetris, A. & Randhawa, P. Recurrent hepatic allograft injury in erythropoietic protoporphyria. Transplantation 61, 1412–1413 (1996).

    Article  Google Scholar 

  22. Hawley, R., Lieu, F., Fong, A. & Hawley, T. Versatile retroviral vectors for potential use in gene therapy. Gene Ther. 1, 136–138 (1994).

    CAS  PubMed  Google Scholar 

  23. Nakahashi, Y., Taketani, S., Okuda, M., Inoue, K. & Tokunaga, R. Molecular cloning and sequence analysis of cDNA encoding human ferrochelatase. Biochem. Biophys. Res. Commun. 173, 748–755 (1990).

    Article  CAS  Google Scholar 

  24. Pear, W., Nolan, G., Scott, M. & Baltimore, D. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90, 8392– 8396 (1993).

    Article  CAS  Google Scholar 

  25. Markowitz, D., Goff, S. & Bank, A. Construction and use of a safe and efficient amphotropic packaging cell line. Virology 167, 400–406 (1988).

    Article  CAS  Google Scholar 

  26. Pawliuk, R., Kay, R., Lansdorp, P. & Humphries, R. K. Selection of retrovirally transduced hematopoietic cells using CD24 as a marker of gene transfer. Blood 84, 2868– 2877 (1994).

    CAS  PubMed  Google Scholar 

  27. Sorrentino, B. et al. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science 257, 99–103 (1992).

    Article  CAS  Google Scholar 

  28. Piomelli, S. Free erythrocyte protoporphyrins in the detection of undue absorption of Pb and of Fe deficiency. Clin. Chem. 23, 264–269 (1977).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Sanchez-Salazar, O. Zurkyia and G. Paradis for their technical assistance. We are grateful to J. Fox for liver function analyses and pathology from the MIT Division of Comparative Medicine. This work was supported by NIH grant HL55435 to P.L. and by the Erythropoietic Protoporphyria Research & Education Fund to M. M.-R.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pawliuk, R., Bachelot, T., Wise, R. et al. Long-term cure of the photosensitivity of murine erythropoietic protoporphyria by preselective gene therapy. Nat Med 5, 768–773 (1999). https://doi.org/10.1038/10488

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/10488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing