Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

IKAP is a scaffold protein of the IκB kinase complex

Abstract

The transcription factor NF-κB coordinates the activation of numerous genes in response to pathogens and pro-inflammatory cytokines, and is, therefore, vital in the development of acute and chronic inflammatory diseases1,2,3,4,5,6. NF-κB is activated by phsophorylation of its inhibitory subunit, IκB-α (ref. 7), on serine residues 32 and 36 by cytokine-activated IκB kinases (IKKs); this phosphorylation precedes rapid degradation of IκB8,9,10,11. IKK-α and IKK-β isozymes are found in large complexes of relative molecular mass 700,000–900,000 (Mr 70K–90K), but little is known about other components that organize and regulate these complexes12,13,14,15,16,17. IKK-α was independently discovered as a NF-κB-inducing kinase18 (NIK)-associated protein in a yeast two-hybrid screen19, and IKK-β was also identified by homology screening20. It is, however, unknown whether NIK is part of the IKK complex. Here we isolate large, interleukin-1-inducible IKK complexes that contain NIK, IKK-α, IKK-β, IκB-α, NF-κB/RelA and a protein of Mr 150K. This latter component is a new protein, termed IKK-complex-associated protein (IKAP), which can bind NIK and IKKs and assemble them into an active kinase complex. We show that IKAP is a scaffold protein and a regulator for threedifferent kinases involved in pro-inflammatory cytokine signalling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Purification and composition of large IKK complexes.
Figure 2: Characteristics of p150/IKAP.
Figure 3: Interaction of p150/IKAP with components of the IKK complex.
Figure 4: IKAP expression affects IL-1 and tumour-necrosis factor (TNF) signalling pathways.
Figure 5: IKAP can assemble active IKK–NIK complexes.

Similar content being viewed by others

References

  1. Siebenlist, U., Brown, K. & Franzoso, G. in Inducible Gene Expression 1, (ed. Baeuerle, P. A.) 93–141 (Birkhaeuser, Boston,(1995).

    Book  Google Scholar 

  2. Verma, I. M., Stevenson, J. K., Schwarz, E. M., Van Antwerp, D. & Miyamoto, S. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9, 2723–2735 (1995).

    Article  CAS  Google Scholar 

  3. Baeuerle, P. A. & Baltimore, D. NF-κB: ten years after. Cell 87, 13–20 (1996).

    Article  CAS  Google Scholar 

  4. Baldwin, A. S. The NF-κB and I-κB proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649–681 (1996).

    Article  CAS  Google Scholar 

  5. Thanos, A. M. & Maniatis, T. NF-κB: a lesson in family values. Cell 80, 529–532 (1995).

    Article  CAS  Google Scholar 

  6. Baeuerle, P. A. & Baichwal, V. R. NF-κB as frequent target for immunosuppressive and anti-inflammatory molecules. Adv. Immunol. 6, 111–137 (1997).

    Article  Google Scholar 

  7. Baeuerle, P. A. & Baltimore, D. IκB: a specific inhibitor of the NF-κB transcription factor. Science 242, 540–546 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Brockman, J. A.et al. Coupling of a signal response domain in IκB to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15, 2809–2818 (1995).

    Article  CAS  Google Scholar 

  9. Brown, K., Gerstberger, S., Carlson, L., Franzoso, G. & Siebenlist, U. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267, 1485–1491 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Traencker, E. B.-M.et al. Phosphorylation of human IκB-α on series 32 and 36 controls IκB-α proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14, 2876–2883 (1995).

    Article  Google Scholar 

  11. DiDonato, J. A.et al. Mapping of the inducible IκB phosphorylation sites that signal its ubiquitination and degradation. Mol. Cell. Biol. 16, 1295–1304 (1996).

    Article  CAS  Google Scholar 

  12. Maniatis, T. Catalysis by a multiprotein IκB kinase complex. Science 278, 818–819 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Stancovski, I. & D. Baltimore. NF-κB activation: the IκB kinase revealed? Cell 91, 299–302 (1997).

    Article  CAS  Google Scholar 

  14. Baeuerle, P. A. Pro-inflammatory signaling: last pieces in the NF-κB puzzle? Curr. Biol. 8, 19–22 (1998).

    Article  Google Scholar 

  15. DiDonato, J. A., Hayakawa, M., Rothwarf, D. M., Zandi, E. & Karin, M. Acytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388, 548–554 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Zandi, E., Rothwarf, D. M., Delhase, M., Hayakawa, M. & Karin, M. The IκB kinase complex (IKK) contains two kinase subunits, IKKα and IKKβ, necessary for IκB phosphorylation and NF-κB activation. Cell 91, 243–252 (1997).

    Article  CAS  Google Scholar 

  17. Mercurio, F.et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278, 860–866 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Malinin, N. L., Boldin, M. P., Kovalenko, A. V. & Wallach, D. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 385, 540–544 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Régnier, C. H.et al. Identification and characterization of an IκB kinase. Cell 90, 373–383 (1997).

    Article  Google Scholar 

  20. Woronicz, J. D., Gao, X., Cao, Z., Rothe, M. & Goeddel, D. V. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278, 866–869 (1997).

    Article  ADS  CAS  Google Scholar 

  21. Yajima, H., Tokunaga, M., Nakayama-Murayama, A. & Hishinuma, F. Characterization of IKI1 and IKI3 genes conferring pGKL killer sensitivity on Saccharomyces cerevisiae. Biosci. Biotech. Biochem. 61, 704–709 (1997).

    Article  CAS  Google Scholar 

  22. Neer, E. J., Schmidt, C. J., Nambudripad, R. & Smith, T. F. The ancient regulatory-protein family of WD-repeat proteins. Nature 371, 297–300 (1994).

    Article  ADS  CAS  Google Scholar 

  23. Cao, Z., Xiong, J., Takeuchi, M., Kurama, T. & Goeddel, D. V. TRAF-6 is a signal transducer for interleukin-1. Nature 383, 443–446 (1996).

    Article  ADS  CAS  Google Scholar 

  24. Lei, L., Cao, Z. & Goeddel, D. V. NF-κB-inducing kinase activates IKK-α phosphorylation of Ser-176. Proc. Natl Acad. Sci. USA 95, 3792–3797 (1998).

    Article  ADS  Google Scholar 

  25. Nakano, H.et al. Differential regulation of the IκB kinase α and β by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc. Natl Acad. Sci. USA 95, 3527–3542 (1998).

    Article  ADS  Google Scholar 

  26. Choi, K. Y., Scatterberg, B., Lyons, D. M. & Ellion, E. A. Ste5 tethers multiple protein kinases in the MAP kinases in the MAP kinase cascade required for mating of S. cerevisiae. Cell 78, 499–512 (1994).

    Article  CAS  Google Scholar 

  27. Printen, J. A. & Sprague, G. F. J Protein–protein interactions in the yeast pheromone response pathway: Ste5p interacts with all members of the MAP kinase cascade. Genetics 138, 609–619 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Marcus, S., Polverino, A., Barr, M. & Wigler, M. Complexes between Ste5 and components of the pheromone-responsive mitogen-activated protein kinase module. Proc. Natl Acad. Sci. USA 91, 7762–7766 (1994).

    Article  ADS  CAS  Google Scholar 

  29. Cao, Z., Henzel, W. J. & Gao, X. IRAK: a kinase associated with the interleukin-1 receptor. Science 271, 1128–1131 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Henzel, W. J. & Stults, J. T. Reversed phase isolation of peptides. Curr. Prot. Protein Sci. 1 11.6.1–11.6.14 (1995).

    Google Scholar 

Download references

Acknowledgements

We thank J. Woronicz, C. Régnier, M. Ayres, S. Li, C. Lehel and T. Hoey for providing reagents; K. Williamson for DNA sequencing; and C. Béraud, M. Rothe, Z. Cao and D. Goeddel for discussions throughout the project and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick A. Baeuerle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, L., Henzel, W. & Baeuerle, P. IKAP is a scaffold protein of the IκB kinase complex. Nature 395, 292–296 (1998). https://doi.org/10.1038/26254

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/26254

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing