Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions

Abstract

The extracellular matrix (ECM) activates signalling pathways that control cell behaviour by binding to cell-surface integrin receptors and inducing the formation of focal adhesion complexes (FACs)1,2. In addition to clustered integrins, FACs contain proteins that mechanically couple the integrins to the cytoskeleton3 and to immobilized signal-transducing molecules1,2. Cell adhesion to the ECM also induces a rapid increase in the translation of pre-existing messenger RNAs4,5. Gene expression can be controlled locally by targeting mRNAs to specialized cytoskeletal domains6. Here we investigate whether cell binding to the ECM promotes formation of a cytoskeletal microcompartment specialized for translational control at the site of integrin binding. High-resolution in situ hybridization revealed that mRNA and ribosomes rapidly and specifically localized to FACs that form when cells bind to ECM-coated microbeads. Relocation of these protein synthesis components to the FAC depended on the ability of integrins to mechanically couple the ECM to the contractile cytoskeleton and on associated tension-moulding of the actin lattice. Our results suggest a new type of gene regulation by integrins and by mechanical stress which may involve translation of mRNAs into proteins near the sites of signal reception.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recruitment of mRNA and ribosomes to FACs 20 min after cell binding to ECM-coated microbeads.
Figure 2: Integrin-dependent relocalization of poly(A)+ RNA and ribosomes to the FAC at 20 min after bead binding.
Figure 3: Kinetics of mRNA and ribosome recruitment to the FAC.
Figure 4: The role of the CSK and mechanical tension in the recruitment process.

Similar content being viewed by others

References

  1. Plopper, G., McNamee, H. P., Dike, L. E., Bojanowski, K. & Ingber, D. Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol. Biol. Cell. 6, 1349–1365 (1995).

    Article  CAS  Google Scholar 

  2. Miyamoto, S. et al. Integrin function: molecular hierarchies of CSK and signaling molecules. J. Cell Biol. 131, 791–805 (1995).

    Article  CAS  Google Scholar 

  3. Wang, N. J., Butler, P. & Ingber, D. E. Mechanotransduction across the cell surface and through the CSK. Science 260, 1124–1127 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Benecke, B.-J., Ben-Ze'ev, A., Benecke, B.-J. & Penman, S. The control of mRNA production, translation and turnover in suspended and reattached anchorage-dependent fibroblasts. Cell 14, 931–939 (1978).

    Article  CAS  Google Scholar 

  5. Farmer, S. R., Ben-Ze'ev, A. & Penman, S. Altered translatability of messenger RNA from suspended anchorage-dependent fibroblasts: reversal upon cell attachment to a surface. Cell 15, 627–637 (1978).

    Article  CAS  Google Scholar 

  6. Bassell, G. & Singer, R. H. mRNA and cytoskeletal filaments. Curr. Opin. Cell Biol. 9, 109–115 (1997).

    Article  CAS  Google Scholar 

  7. Plopper, G. & Ingber, D. E. Rapid induction and isolation of focal adhesion complexes. Biochem. Biophys. Res. Commun. 193, 571–578 (1993).

    Article  CAS  Google Scholar 

  8. Latham, V., Kislauskis, E., Singer, R. & Ross, A. β-Actin mRNA localization is regulated by signal transduction mechanisms. J. Cell Biol. 126, 1211–1219 (1994).

    Article  CAS  Google Scholar 

  9. Taneja, K. L., Lifshitz, L. M., Fay, F. S. & Singer, R. H. Poly(A) RNA codistribution with microfilaments: Evaluation by in situ hybridization and quantitative digital imaging microscopy. J. Cell Biol. 119, 1245–1260 (1992).

    Article  CAS  Google Scholar 

  10. Bassell, G. J., Powers, C. M., Taneja, K. L. & Singer, R. H. Single mRNAs visualized by ultrastructural in situ hybridization are principally localized at actin filament intersections in fibroblasts. J. Cell Biol. 126, 863–876 (1994).

    Article  CAS  Google Scholar 

  11. Ingber, D. E. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J.Cell Sci. 104, 613–627 (1993).

    PubMed  Google Scholar 

  12. Wang, N. & Ingber, D. E. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem. Cell Biol. 73, 327–335 (1995).

    Article  CAS  Google Scholar 

  13. Cramer, L. P. & Mitchison, T. J. Myosin is involved in postmitotic cell spreading. J. Cell Biol. 131, 179–189 (1995).

    Article  CAS  Google Scholar 

  14. Nakanishi, S., Yamada, K., Iwahashi, K., Kuroda, K. & Kase, H. KT5926, a potent and selective inhibitor of myosin light chain kinase. Mol. Pharmacol. 37, 482–488 (1990).

    CAS  PubMed  Google Scholar 

  15. Long, R. M. et al. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 277, 383–387 (1997).

    Article  CAS  Google Scholar 

  16. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    Article  CAS  Google Scholar 

  17. Ingber, D. E. et al. Control of intracellular pH and growth by fibronectin in capillary endothelial cells. J. Cell Biol. 110, 1803–1811 (1990).

    Article  CAS  Google Scholar 

  18. Edmonds, B. T., Murray, J. & Condeelis, J. pH regulation of the F-actin binding properties of Dictyostelium elongation factor 1a. J. Biol. Chem. 270, 15222–15230 (1995).

    Article  CAS  Google Scholar 

  19. Vuori, K. & Ruoslahti, E. Activation of protein kinase C precedes α5β1 integrin-mediated cell spreading on FN. J. Biol. Chem. 268, 21459–21462 (1993).

    CAS  PubMed  Google Scholar 

  20. Morley, S. J. Signal transduction mechanisms in the regulation of protein synthesis. Mol. Biol. Rep. 19, 221–231 (1994).

    Article  CAS  Google Scholar 

  21. Whalen, S. G. et al. Phosphorylation of eIF-4E on serine 209 by protein kinase C is inhibited by the translational repressors, 4E-binding proteins. J. Biol. Chem. 271, 11831–11837 (1996).

    Article  CAS  Google Scholar 

  22. Von Manteuffel, S., Gingras, A. C., Ming, X. F., Sonenberg, N. & Thomas, G. 4E-BP1 phosphorylation is mediated by the FRAP-p70s6k pathway and is independent of mitogen-activated protein kinase. Proc. Natl Acad. Sci. USA 93, 4076–4080 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Sonenberg, N. Regulation of translation and cell growth by eIF-4E. Biochimie 76, 839–846 (1994).

    Article  CAS  Google Scholar 

  24. Singh, N. K., Attreya, C. D. & Nakhasi, H. L. Identification of calreticulin as a rubella virus RNA binding protein. Proc. Natl Acad. Sci. USA 91, 12770–12774 (1994).

    Article  ADS  CAS  Google Scholar 

  25. Schmeichel, K. L. & Beckerle, M. C. Molecular dissection of a LIM domain. Mol. Biol. Cell. 8, 219–230 (1997).

    Article  CAS  Google Scholar 

  26. Wada, H., Ivester, C. T., Carabello, B. A., Cooper, G. & McDermott, P. J. Translational initiation factor eIF-4E. A link between cardiac load and protein synthesis. J. Biol. Chem. 271, 8359–8364 (1996).

    Article  CAS  Google Scholar 

  27. Kourembanas, S., Hannan, R. L. & Faller, D. V. Oxygen tension regulates the expression of the platelet-derived growth factor-B chain in human endothelial cells. J. Clin. Invest. 86, 670–674 (1990).

    Article  CAS  Google Scholar 

  28. Lucas, J. J., Szekely, E. & Kates, J. R. The regeneration and division of mouse L-cell karyoplasts. Cell 7, 115–122 (1976).

    Article  CAS  Google Scholar 

  29. Schwartz, M. A., Lechene, C. & Ingber, D. E. Insoluble FN activates the Na+/H+ antiporter by clustering and immobilizing integrin alpha 5 beta 1, independent of cell shape. Proc. Natl Acad. Sci. USA 88, 7849–7853 (1991).

    Article  ADS  CAS  Google Scholar 

  30. Zhang, G., Taneja, K. L., Singer, R. H. & Green, M. R. Localization of pre-mRNA splicing in mammalian nuclei. Nature 372, 809–812 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Taneja, S. Shenoy, N. Wang, J. Fredberg, S. Kourembanas, G. Lee, G.Whitesides and the Biomedical Imaging Facility at the University of Massachusetts in Worcester for key reagents, equipment and technical expertise, and B. Peters and C. Chen for discussion. This work was supported by grants from the NIH and NASA and an American Cancer Society postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald E. Ingber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chicurel, M., Singer, R., Meyer, C. et al. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature 392, 730–733 (1998). https://doi.org/10.1038/33719

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/33719

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing