Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

CpG methylation is maintained in human cancer cells lacking DNMT1

Abstract

Hypermethylation is associated with the silencing of tumour susceptibility genes in several forms of cancer1,2; however, the mechanisms responsible for this aberrant methylation are poorly understood3,4. The prototypic DNA methyltransferase, DNMT1, has been widely assumed to be responsible for most of the methylation of the human genome, including the abnormal methylation found in cancers5,6. To test this hypothesis, we disrupted the DNMT1 gene through homologous recombination in human colorectal carcinoma cells. Here we show that cells lacking DNMT1 exhibited markedly decreased cellular DNA methyltransferase activity, but there was only a 20% decrease in overall genomic methylation. Although juxtacentromeric satellites became significantly demethylated, most of the loci that we analysed, including the tumour suppressor gene p16INK4a, remained fully methylated and silenced. These results indicate that DNMT1 has an unsuspected degree of regional specificity in human cells and that methylating activities other than DNMT1 can maintain the methylation of most of the genome.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of human cells deficient in DNMT1.
Figure 2: -Methylcytosine (m5C ) content of DNMT1-/- cells.
Figure 3: CpG methylation of repetitive regions.
Figure 4: DNMT1-/- cells retain the silencing phenotype of parental cells.
Figure 5: Silencing of exogenous sequences is maintained in DNMT1-/- cells.

Similar content being viewed by others

References

  1. Baylin,S. B., Herman,J. G., Graff,J. R., Vertino,P. M. & Issa,J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72 , 141–196 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Jones,P. A. & Laird,P. W. Cancer epigenetics comes of age. Nature Genet. 21, 163– 167 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Schmutte,C., Yang,A. S., Nguyen,T. T., Beart,R. W. & Jones,P. A. Mechanisms for the involvement of DNA methylation in colon carcinogenesis. Cancer Res. 56, 2375 –2381 (1996).

    CAS  PubMed  Google Scholar 

  4. Eads,C. A. et al. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 59, 2302–2306 ( 1999).

    CAS  PubMed  Google Scholar 

  5. Li,E., Bestor,T. H. & Jaenisch, R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Hsu,D. W. et al. Two major forms of DNA (cytosine-5) methyltransferase in human somatic tissues. Proc. Natl Acad. Sci. USA 96, 9751–9756 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chan,T. A., Hermeking,H., Lengauer,C., Kinzler,K. W. & Vogelstein,B. 14-3-3σ is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616–620 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Lengauer,C., Kinzler,K. W. & Vogelstein, B. DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl Acad. Sci. USA 94, 2545–2550 (1997).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Myohanen,S. K., Baylin,S. B. & Herman, J. G. Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res. 58, 591–593 (1998).

    CAS  PubMed  Google Scholar 

  10. Lengauer,C., Kinzler,K. W. & Vogelstein, B. Genetic instability in colorectal cancers. Nature 386, 623–627 ( 1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Graff,J. R., Herman,J. G., Myohanen,S., Baylin,S. B. & Vertino,P. M. Mapping patterns of CpG island methylation in normal and neoplastic cells implicates both upstream and downstream regions in de novo methylation. J. Biol. Chem. 272, 22322–22329 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Kuo,K. C., McCune,R. A., Gehrke,C. W., Midgett,R. & Ehrlich,M. Quantitative reversed-phase high performance liquid chromatographic determination of major and modified deoxyribonucleosides in DNA. Nucleic Acids Res. 8, 4763– 4776 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Feinberg,A. P., Gehrke,C. W., Kuo,K. C. & Ehrlich,M. Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res. 48, 1159–1161 ( 1988).

    CAS  PubMed  Google Scholar 

  14. Frommer,M. et al. A genomic sequencing protocol that yields a positive display of 5- methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okamoto,A. et al. Mutations and altered expression of p16INK4 in human cancer. Proc. Natl Acad. Sci. USA 91, 11045– 11049 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bachman,K. E. et al. Methylation-associated silencing of the tissue inhibitor of metalloproteinase-3 gene suggests a suppressor role in kidney, brain, and other human cancers. Cancer Res. 59, 798 –802 (1999).

    CAS  PubMed  Google Scholar 

  17. Santi,D. V., Garrett,C. E. & Barr, P. J. On the mechanism of inhibition of DNA-cytosine methyltransferases by cytosine analogs. Cell 33, 9– 10 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. Santi,D. V., Norment,A. & Garrett, C. E. Covalent bond formation between a DNA-cytosine methyltransferase and DNA containing 5-azacytosine. Proc. Natl Acad. Sci. USA 81, 6993–6997 (1984).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Juttermann,R., Li,E. & Jaenisch,R. Toxicity of 5-aza-2′-deoxycytidine to mammalian cells is mediated primarily by covalent trapping of DNA methyltransferase rather than DNA demethylation. Proc. Natl Acad. Sci. USA 91, 11797– 11801 (1994).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okano,M., Xie,S. & Li,E. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nature Genet. 19, 219 –220 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Okano,M., Bell,D. W., Haber,D. A. & Li,E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247– 257 (1999).

    CAS  PubMed  Google Scholar 

  22. Li,E., Beard,C. & Jaenisch,R. Role for DNA methylation in genomic imprinting. Nature 366, 362–365 ( 1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Lei,H. et al. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122, 3195 –3205 (1996).

    CAS  PubMed  Google Scholar 

  24. Xu,G. L. et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402 , 187–191 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. He,T. C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl Acad. Sci. USA 95, 2509– 2514 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Vertino,P. M., Yen,R. W., Gao,J. & Baylin,S. B. De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol. Cell. Biol. 16, 4555– 4565 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jeanpierre,M. Human satellites 2 and 3. Ann. Genet. 37, 163–171 (1994).

    CAS  PubMed  Google Scholar 

  28. Toyota,M. et al. Identification of differentially methylated sequences in colorectal cancer by methylated CpG island amplification. Cancer Res. 59, 2307–2312 (1999).

    CAS  PubMed  Google Scholar 

  29. Herman,J. G., Graff,J. R., Myohanen,S., Nelkin,B. D. & Baylin, S. B. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA 93 , 9821–9826 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cameron,E. E., Bachman,K. E., Myohanen,S., Herman,J. G. & Baylin,S. B. Synergy of demethylation and histone deacetylase inhibition in the re- expression of genes silenced in cancer. Nature Genet. 21, 103– 107 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. R. Lee and S. G. Rhee for sharing their expertise in HPLC analysis. We thank T. Chan, M. Esteller, N. Watkins and other members of our laboratories for helpful discussions. This work was supported by the Clayton Fund and by the National Institutes of Health. K.E.S. is a Fellow of the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kornel E. Schuebel.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhee, I., Jair, KW., Yen, RW. et al. CpG methylation is maintained in human cancer cells lacking DNMT1 . Nature 404, 1003–1007 (2000). https://doi.org/10.1038/35010000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35010000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing