Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine.

Abstract

ATP-binding-cassette transporter 1 (ABC1) has been implicated in processes related to membrane-lipid turnover. Here, using in vivo loss-of-function and in vitro gain-of-function models, we show that ABC1 promotes Ca2+-induced exposure of phosphatidylserine at the membrane, as determined by a prothrombinase assay, membrane microvesiculation and measurement of transbilayer redistribution of spin-labelled phospholipids. That ABC1 promotes engulfment of dead cells is shown by the impaired ability of ABC1-deficient macrophages to engulf apoptotic preys and by the acquisition of phagocytic behaviour by ABC1 transfectants. Release of membrane phospholipids and cholesterol to apo-AI, the protein core of the cholesterol-shuttling high-density lipoprotein (HDL) particle, is also ABC1-dependent. We propose that both the efficiency of apoptotic-cell engulfment and the efflux of cellular lipids depend on ABC1-induced perturbation of membrane phosphatidylserine turnover. Transient local exposure of anionic phospholipids in the outer membrane leaflet may be sufficient to alter the general properties of the membrane and thus influence discrete physiological functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Establishment of ABC1-null mice.
Figure 2: Engulfment defect in ABC1-null mice.
Figure 3: Generation of transfectants.
Figure 4: Subcellular localization of ABC1.
Figure 5: ABC1-expressing cells acquire the ability to engulf apoptotic thymocytes.
Figure 6: ABC1 modulates lipid efflux to the apo-AI acceptor.
Figure 7: Figure 7 ABC1 promotes transbilayer redistribution of phosphatidylserine.

Similar content being viewed by others

References

  1. Luciani, M. F., Denizot, F., Savary, S., Mattei, M. G. & Chimini, G. Cloning of two novel ABC transporters mapping on human chromosome 9. Genomics 21, 150–159 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Luciani, M. F. & Chimini, G. The ATP binding cassette transporter ABC1 is required for the engulfment of corpses generated by apoptotic cell death. EMBO J. 15, 226–235 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ellis, R. E., Jacobson, D. M. & Horvitz, H. R. Genes required for the engulfment of cell corpses during programmed cell death in Caenorhabditis elegans. Genetics 129, 79–94 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, Y. & Horvitz, R. H. The C. elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell 93, 951–960 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Fadok, V., Bratton, D. L., Frasch, S. C., Warner, M. & Henson, P. M. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes. Cell Death Differ. 5, 551–562 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Savill, J. Phagocytic docking without shocking. Nature 392, 442–443 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Marguet, D., Luciani, M. F., Moynault, A., Williamson, P. & Chimini, G. Engulfment of apoptotic cells involves the redistribution of membrane phosphatidylserine on both phagocyte and prey. Nature Cell Biol. 1, 454–456 (1999).

    Article  CAS  PubMed  Google Scholar 

  8. Rust, S. et al. Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1. Nature Genet. 22, 352–355 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Bodzioch, M. et al. The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease. Nature Genet. 22, 347–351 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Brooks-Wilson, A. et al. Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency. Nature Genet. 22, 336–345 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Lawn, R.M. et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. J. Clin. Invest. 104, R25–R31 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Orso, E. et al. ABC1 mediates the cellular export of cholesterol and phospholipides: defective golgi to plasma membrane lipid transport in ABC1 null mice and Tangier Disease. Nature Genet. 24, 192–196 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. McNeish, J. et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter 1. Proc. Natl Acad. Sci. USA 97, 4245–4250 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fielding, C. J. & Fielding, P. E. Molecular physiology of reverse cholesterol transport. J. Lipid Res. 36, 211–228 (1995).

    CAS  PubMed  Google Scholar 

  15. Oram, J. F. & Yokohama, S. Apolipoprotein-mediated removal of cellular cholesterol and phospholipids. J. Lipid Res. 37, 2473–2491 (1996).

    CAS  PubMed  Google Scholar 

  16. Roach, M. L., Stock, J. L., Byrum, R., Koller, B. H. & McNeish, J. D. A new embryonic stem cell line from DBA/1lacJ mice allows genetic modification in a murine model of human inflammation. Exp.Cell Res. 221, 520–525 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Yamamoto, Y. & Henderson, C. E. Patterns of programmed cell death in populations of spinal motoneurons in chicken, mouse and rat. Dev. Biol. 214, 60–71 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Kerr, J. F. R., Wyllie, A. H. & Currie, A. R. Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Walker, J. E., Saraste, M., Runswick, M. J. & Gay, N. J. Distantly related sequences in the α and β subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 8, 945–951 (1982).

    Article  Google Scholar 

  20. Anderson, M. P. & Welsh, M. J. Regulation by ATP and ADP of CFTR chloride channels that contain mutant nucleotide-binding domains. Science 257, 1701–1704 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Linstedt, A. D. & Hauri, H. P. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350 kDa. Mol. Biol. Cell 4, 679–693 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Meresse, S., Gorvel, J. P. & Chavrier, P. The rab7 GTPase resides on a vesicular compartment connected to lysosomes. J. Cell Sci. 108, 3349–3358 (1995).

    CAS  PubMed  Google Scholar 

  23. Kobayashi, T. et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function. Nature 392, 193–197 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Via, L.E. et al. Effects of cytokines on mycobacterial phagosome maturation. J. Cell Sci. 111, 897–905 (1998).

    CAS  PubMed  Google Scholar 

  25. Tardieux, I. et al. Lysosome recruitment and fusion are early events required for trypanosome invasion of mammalian cells. Cell 71, 1117–1130 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Young, S. G. & Fielding, C. J. The ABCs of cholesterol efflux. Nature Genet. 22, 316–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Toti, F., Satta, N., Fressinaud, E., Meyer, D. & Freyssinet, J-M. Scott syndrome, characterized by impaired transmembrane migration of procoagulant phosphatidylserine and hemorrhagic complications, is an inherited disorder. Blood 87, 1409–1415 (1996).

    CAS  PubMed  Google Scholar 

  28. Zwaal, R. F. A. & Schroit, A. J. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood 89, 1121–1132 (1997).

    CAS  PubMed  Google Scholar 

  29. Seigneuret, M. & Devaux, P. Asymmetryc distribution of spinlabeled phospholipid in the erytrocyte membrane: relation to shape change. Proc. Natl Acad. Sci. USA 81, 3751 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bucki, R., Bachelot-Loza, C., Zachowski, A., Giraud, F. & Sulpice, J. C. Calcium induces phospholipid redistribution and microvesicles release in human erythrocyte membranes by independent pathways. Biochemistry 37, 15383–15391 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. von Eckardstein, A. et al. Plasma and fibroblasts of Tangier disease patients are disturbed in transferring phospholipids onto apoA-I. J. Lipid Res. 39, 987–998 (1998).

    CAS  PubMed  Google Scholar 

  32. Weng, J. et al. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 98, 13–23 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Van Helvoort, A. et al. MDR1 P-glycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87, 507–517 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Seksek, O., Biwersi, J. & Verkman, A. S. Evidence against defective trans-Golgi acidification in cystic fibrosis. J. Biol. Chem. 271, 15542–15548 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Biwersi, J., Emans, N. & Verkman, A. S. Cystic fibrosis transmembrane conductance regulator activation stimulates endosome fusion in vivo. Proc. Natl Acad. Sci. USA 93, 12484–12489 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Le Borgne, R. & Hoflack, B. Protein transport from the secretory to the endocytic pathway in mammalian cells. Biochim. Biophys. Acta 1404, 195–209 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Morin, X. et al. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18, 411–423 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Remaley, A. T. et al. Human ATP-binding cassette transporter 1 (ABC1): genomic organization and identification of the genetic defect in the original Tangier disease kindred. Proc. Natl Acad. Sci. USA 96, 12685–12690 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Langmann, T. et al. Molecular cloning of the human ATP-binding cassette transporter 1 (hABC1): evidence for sterol-dependent regulation in macrophages. Biochem. Biophys. Res. Commun. 257, 29–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Southgate, C. D., Chishti, A. H., Mitchell, B., Yi, S. J. & Palek, J. Targeted disruption of the murine erythroid band 3 gene results in spherocytosis and severe haemolytic anemia despite a normal membrane skeleton. Nature Genet. 14, 227–230 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J.Cell Biol. 119, 493–501 (1992).

    Article  CAS  PubMed  Google Scholar 

  42. Baron, U., Freundlieb, S., Gossen, M. & Bujard, H. Co-regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23, 3605–3606 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Becq, F. et al. ABC1, an ATP-binding cassette transporter required for phagocytosis of apoptotic cells, generates a regulated anion flux after expression in Xenopus laevis oocytes. J. Biol. Chem. 272, 2695–2699 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Vallejo, A. N. in PCR Primers (ed. Dieffenbach, G. S. D.) 603–625 (CHSL, 1995).

  45. Celis, J. E. Cell Biology. A Laboratory Handbook (Academic, San Diego, 1994).

  46. Hess, K. L., Babcock, G. F., Askew, D. S. & Cook-Mills, J. M. A novel flow cytometric method for quantifying phagocytosis of apoptotic cells. Cytometry 27, 145–152 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bligh, E. G. D. W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911–917 (1959).

    Article  CAS  Google Scholar 

  48. Devaux, P. F. Static and dynamic lipid asymmetry in cell membranes. Biochemistry 30, 1163–1170 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Fellmann, P., Zachowski, A. & Devaux, P. F. Synthesis and use of spin-labeled lipids for studies of the transmembrane movement of phospholipids. Methods Mol.Biol. 27, 161–175 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Cremer for the pKO vector, Pfizer for support in the generation of ABC1–/– mice, Y. Yamamoto and C. Henderson for help with the whole-mount TUNEL technique, A. LeBivic and S. Meresse for antibodies against giantin, 6C4, Lamp1 and M6PR, S. Granjeaud for help with software, G. Schmitz and W. Drobnik for introducing O.C. to the techniques of lipid effluxes, and J.F. Brunet, P.Golstein, P. Henson and V. Fadok for discussions. P.D. acknowledges the excellent technical assistance of P. Herve and D. Geldwerth during preliminary lipid-scrambling experiments. C.B.and Y.H. were supported by an ARC fellowship. This work was supported by Institutional grants from INSERM and CNRS, and by specific grants from ARC, LLNC and CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Chimini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamon, Y., Broccardo, C., Chambenoit, O. et al. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine.. Nat Cell Biol 2, 399–406 (2000). https://doi.org/10.1038/35017029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing