Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Parallel evolution of virulence in pathogenic Escherichia coli

Abstract

The mechanisms underlying the evolution and emergence of new bacterial pathogens are not well understood. To elucidate the evolution of pathogenic Escherichia coli strains, here we sequenced seven housekeeping genes to build a phylogenetic tree and trace the history of the acquisition of virulence genes. Compatibility analysis indicates that more than 70% of the informative sites agree with a single phylogeny, suggesting that recombination has not completely obscured the remnants of ancestral chromosomes1,2,3. On the basis of the rate of synonymous substitution for E. coli and Salmonella enterica (4.7 × 10-9 per site per year3), the radiation of clones began about 9 million years ago and the highly virulent pathogen responsible for epidemics of food poisoning, E. coli O157:H7, separated from a common ancestor of E. coli K-12 as long as 4.5 million years ago. Phylogenetic analysis reveals that old lineages of E. coli have acquired the same virulence factors in parallel, including a pathogenicity island involved in intestinal adhesion, a plasmid-borne haemolysin, and phage-encoded Shiga toxins. Such parallel evolution indicates that natural selection has favoured an ordered acquisition of genes and the progressive build-up of molecular mechanisms that increase virulence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic locations and variability of E. coli housekeeping genes.
Figure 2: Compatibility of nucleotide polymorphisms.
Figure 3: Phylogenetic analysis of 21 E. coli strains.

Similar content being viewed by others

References

  1. Guttman, D. S. & Dykhuizen, D. E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266, 1380–1383 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Milkman, R. in Escherichia coli and Salmonella: Cellular and Molecular Biology 2nd edn (eds Neidhardt, F. C. et al.) 2663–2684 (American Society for Microbiology, Washington DC, 1996).

    Google Scholar 

  3. Lawrence, J. G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl Acad. Sci. USA 95, 9413–9417 ( 1998).

    Article  ADS  CAS  Google Scholar 

  4. Nataro, J. P. & Kaper, J. B. Diarrheagenic Escherichia coli . Clin. Microbiol. Rev. 11, 142– 201 (1998).

    Article  CAS  Google Scholar 

  5. Whittam, T. S. et al. Clonal relationships among Escherichia coli strains that cause hemorrhagic colitis and infantile diarrhea. Infect. Immun. 61, 1619–1629 ( 1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jakobsen, I. B. & Easteal, S. A program for calculating and displaying compatibility matrices as an aid in determining reticulate evolution in molecular sequences. CABIOS 12, 291–295 (1996).

    CAS  PubMed  Google Scholar 

  7. Wang, F. S., Whittam, T. S. & Selander, R. K. Evolutionary genetics of the isocitrate dehydrogenase gene (icd) in Escherichia coli and Salmonella enterica. J. Bacteriol. 179, 6551– 6559 (1997).

    Article  CAS  Google Scholar 

  8. Bandelt, H. J. & Dress, A. W. M. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1, 242–252 (1992).

    Article  CAS  Google Scholar 

  9. Dopazo, J., Dress, A. & von Haeseler, A. Split decomposition: a technique to analyze viral evolution. Proc. Natl Acad. Sci. USA 90, 10320– 10324 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Holmes, E. C., Urwin, R. & Maiden, M. C. The influence of recombination on the population structure and evolution of the human pathogen Neisseria meningitidis. Mol. Biol. Evol. 16, 741–749 (1999).

    Article  CAS  Google Scholar 

  11. Takezaki, N., Rzhetsky, A. & Nei, M. Phylogenetic test of the molecular clock and linearized trees. Mol. Biol. Evol. 12, 823– 833 (1995).

    CAS  PubMed  Google Scholar 

  12. Li, W.-H. Molecular Evolution (Sinauer Associates, Sunderland, Masschusetts, 1997).

    Google Scholar 

  13. Feng, P., Lampel, K. A., Karch, H. & Whittam, T. S. Genetic and phenotypic changes in the emergence of Escherichia coli O157:H7. J. Infect. Dis. 177, 1750–1753 (1998).

    Article  CAS  Google Scholar 

  14. Karch, H. in Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains (eds Kaper, J. B. & O'Brien, A. D.) 183–194 (ASM, Washington DC, 1998).

    Google Scholar 

  15. Newland, J. W. & Neill, R. J. DNA probes for Shiga-like toxins I and II and for toxin-converting bacteriophages. J. Clin. Microbiol. 26, 1292–1297 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schmidt, H., Beutin, L. & Karch, H. Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect. Immun. 63, 1055–1061 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmidt, H. & Karch, H. Enterohemolytic phenotypes and genotypes of shiga toxin-producing Escherichia coli O111 strains from patients with diarrhea and hemolytic-uremic syndrome. J. Clin. Microbiol. 34, 2364–2367 ( 1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Boyd, E. F. & Hartl, D. L. Chromosomal regions specific to pathogenic isolates of Escherichia coli have a phylogenetically clustered distribution. J. Bacteriol. 180, 1159– 1165 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wieler, L. H., McDaniel, T. K., Whittam, T. S. & Kaper, J. B. Insertion site of the locus of enterocyte effacement in enteropathogenic and enterohemorrhagic Escherichia coli differs in relation to the clonal phylogeny of strains. FEMS Microbiol. Lett. 156, 49–53 (1997).

    Article  CAS  Google Scholar 

  20. Sperandio, V. et al. Characterization of the locus of enterocyte effacement (LEE) in different enteropathogenic Escherichia coli (EPEC) and Shiga-toxin producing Escherichia coli (STEC) serotypes. FEMS Microbiol. Lett. 164, 133–139 ( 1998).

    Article  CAS  Google Scholar 

  21. McGraw, E. A., Li, J., Selander, R. K. & Whittam, T. S. Molecular evolution and mosaic structure of α, β, and γ intimins of pathogenic Escherichia coli. Mol. Evol. Biol. 16, 12–22 (1999).

    Article  CAS  Google Scholar 

  22. LeClerc, J. E., Li, B., Payne, W. L. & Cebula, T. A. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274, 1208–1211 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Karaolis, D. K., Somara, S., Maneval, D. R., Jr., Johnson, J. A. & Kaper, J. B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399, 375–379 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Whittam, T. S. in Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains (eds Kaper, J. B. & O'Brien, A. D.) 195– 209 (ASM, Washington DC, 1998).

    Google Scholar 

  25. Reid, S. D., Betting, D. J. & Whittam, T. S. Molecular detection and identification of intimin alleles in pathogenic Escherichia coli by multiplex PCR. J. Clin. Microbiol. 37, 2719–2722 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).

    Article  CAS  Google Scholar 

  27. Huson, D. H. SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 68–73 ( 1998).

    Article  CAS  Google Scholar 

  28. Kumar, S., Tamura, K. & Nei, M. MEGA: Molecular evolutionary genetics analysis, version 1.0. (Pennsylvania State Univ., Univ. Park, Pennsylvannia, 1993).

    Google Scholar 

  29. Felsenstein, J. PHYLIP—Phylogeny inference package (version 3.2). Cladistics 5, 164–166 ( 1989).

    Google Scholar 

Download references

Acknowledgements

The authors thank S. Plock for technical assistance. This research was supported by NIH grants (to T.S.W. and R.K.S.), and the Enteric Pathogen Research Unit at the University of Maryland Medical School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas S. Whittam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reid, S., Herbelin, C., Bumbaugh, A. et al. Parallel evolution of virulence in pathogenic Escherichia coli. Nature 406, 64–67 (2000). https://doi.org/10.1038/35017546

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35017546

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing