Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A chemokine-driven positive feedback loop organizes lymphoid follicles

Abstract

Lymphoid follicles are B-cell-rich compartments of lymphoid organs that function as sites of B-cell antigen encounter and differentiation. CXC chemokine receptor-5 (CXCR5) is required for B-cell migration to splenic follicles1, but the requirements for homing to B-cell areas in lymph nodes remain to be defined. Here we show that lymph nodes contain two types of B-cell-rich compartment: follicles containing follicular dendritic cells, and areas lacking such cells. Using gene-targeted mice, we establish that B-lymphocyte chemoattractant (BLC/BCA1)2,3 and its receptor, CXCR5, are needed for B-cell homing to follicles in lymph nodes as well as in spleen. We also find that BLC is required for the development of most lymph nodes and Peyer's patches. In addition to mediating chemoattraction, BLC induces B cells to upregulate membrane lymphotoxin α1β2, a cytokine that promotes follicular dendritic cell development and BLC expression4,5, establishing a positive feedback loop that is likely to be important in follicle development and homeostasis. In germinal centres the feedback loop is overridden, with B-cell lymphotoxin α1β2 expression being induced by a mechanism independent of BLC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: BLC genomic locus and lack of BLC mRNA and protein in BLC-/- mice.
Figure 2: Absence of primary follicles and FDCs in BLC-/- mice, and defective homing of CXCR5-/- B cells to lymph node follicles.
Figure 3: Membrane LTα1β2 expression on B cells in peripheral lymphoid tissues and dependence on BLC.
Figure 4: BLC induces LTα1β2 upregulation on B cells in vitro.
Figure 5: Misplaced FDC-containing germinal centres in BLC-/- mice and BLC-independent expression of LTα1β2 on germinal centre B cells.

Similar content being viewed by others

References

  1. Förster, R. et al. A putative chemokine receptor, BLR1, directs B-cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  PubMed  Google Scholar 

  2. Gunn, M. D. et al. A B-cell-homing chemokine made in lymphoid follicles activates Burkitt's lymphoma receptor-1. Nature 391, 799–803 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Legler, D. F. et al. B cell-attracting chemokine 1, a human CXC chemokine expressed in lymphoid tissues, selectively attracts B lymphocytes via BLR1/CXCR5. J. Exp. Med. 187, 655–660 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fu, Y. -X. & Chaplin, D. D. Development and maturation of secondary lymphoid tissues. Annu. Rev. Immunol. 17, 399–433 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Ngo, V. N. et al. Lymphotoxin-α/β and tumor necrosis factor are required for stromal cell expression of homing chemokines in B and T cell areas of the spleen. J. Exp. Med. 189, 403– 412 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tew, J. G. et al. Follicular dendritic cells and presentation of antigen and costimulatory signals to B cells. Immunol. Rev. 156, 39 –52 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Fu, Y. X., Huang, G., Wang, Y. & Chaplin, D. D. B lymphocytes induce the formation of follicular dendritic cell clusters in a lymphotoxin alpha-dependent fashion. J. Exp. Med. 187, 1009–1018 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gonzalez, M., Mackay, F., Browning, J. L., Kosco-Vilbois, M. H. & Noelle, R. J. The sequential role of lymphotoxin and B cells in the development of splenic follicles. J. Exp. Med. 187, 997–1007 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Endres, R. et al. Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J. Exp. Med. 189, 159–168 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Browning, J. L. et al. Lymphotoxin beta, a novel member of the TNF family that forms a heteromeric complex with lymphotoxin on the cell surface. Cell 72, 847–856 ( 1993).

    Article  CAS  PubMed  Google Scholar 

  11. Worm, M. & Geha, R. S. CD40 ligation induces lymphotoxin alpha gene expression in human B cells. Int. Immunol. 6, 1883–1890 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Pokholok, D. K. et al. Cloning and expression analysis of the murine lymphotoxin beta gene. Proc. Natl Acad. Sci. USA 92, 674–678 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Browning, J. L. et al. Characterization of lymphotoxin-alpha beta complexes on the surface of mouse lymphocytes. J. Immunol. 159, 3288–3298 (1997).

    CAS  PubMed  Google Scholar 

  14. Miller, J. J. D., Johnsen, D. O. & Ada, G. L. Differences in localization of Salmonella flagella in lymph node follicles of germ-free and conventional rats. Nature 217, 1059–1061 ( 1968).

    Article  ADS  PubMed  Google Scholar 

  15. Mason, D. Y., Jones, M. & Goodnow, C. C. Development and follicular localization of tolerant B lymphocytes in lysozyme/anti-lysozyme IgM/IgD transgenic mice. Int. Immunol. 4, 163–175 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Gutman, G. A. & Weissman, I. L. Homing properties of thymus-independent follicular lymphocytes. Transplantation 16, 621–629 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Vajdy, M., Kosco-Vilbois, M. H., Kopf, M., Kohler, G. & Lycke, N. Impaired mucosal immune responses in interleukin 4-targeted mice. J. Exp. Med. 181, 41–53 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Cyster, J. G. Chemokines and cell migration in secondary lymphoid organs. Science 286, 2098–2102 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  20. Voigt, I. et al. CXCR5-deficient mice develop functional germinal centers in the splenic T cell zone. Eur. J. Immunol. 30, 560–567 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Mackay, F. & Browning, J. L. Turning off follicular dendritic cells. Nature 395, 26–27 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Golovkina, T. V., Shlomchik, M., Hannum, L. & Chervonsky, A. Organogenic role of B lymphocytes in mucosal immunity. Science 286, 1965–1968 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  23. Luther, S. A., Lopez, T., Bai, W., Hanahan, D. & Cyster, J. G. BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 12, 471–481 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  24. Yokota, Y. et al. Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397, 702–706 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Mebius, R. E., Rennert, P. & Weissman, I. L. Developing lymph nodes collect CD4+CD3-LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Yoshida, H. et al. IL-7 receptor α+ CD3- cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol. 11, 643– 655 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Matsumoto, M. et al. Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271, 1289– 1291 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Korner, H. et al. Distinct roles for lymphotoxin-alpha and tumor necrosis factor in organogenesis and spatial organization of lymphoid tissue. Eur. J. Immunol. 27, 2600–2609 (1997).

    Article  CAS  PubMed  Google Scholar 

  29. Ansel, K. M., McHeyzer-Williams, L. J., Ngo, V. N., McHeyzer-Williams, M. G. & Cyster, J. G. In vivo activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tilney, N. L. Patterns of lymphatic drainage in the adult laboratory rat. J. Anat. 109, 369–383 ( 1971).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are especially grateful to N. Killeen for advice and help in generating the BLC knockout mice; K. Reif and L. Tang for helpful advice; and A. Schmidt and C. Backus for blastocyst transfers. K.M.A. is a HHMI predoctoral fellow, S.A.L. is supported by Human Frontier Science Program, and J.G.C is a Packard fellow. This work was supported by grants from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason G. Cyster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansel, K., Ngo, V., Hyman, P. et al. A chemokine-driven positive feedback loop organizes lymphoid follicles . Nature 406, 309–314 (2000). https://doi.org/10.1038/35018581

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35018581

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing