Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of chemotaxis by the platelet-derived growth factor receptor-β

Abstract

CHEMOTAXIS is an important component of wound healing, development, immunity and metastasis, yet the signalling pathways that mediate chemotaxis are poorly understood. Platelet-derived growth factor (PDGF) acts both as a mitogen and a chemoattractant1. Upon stimulation, the tyrosine kinase PDGF receptor-β (PDGFR-β) autophosphorylates2 and forms a complex that includes SH2(Src homology 2)-domain-containing proteins such as the phosphatidylinositol-specific phospholipase C-γ (ref. 3), Ras-GTPase-activating protein (GAP)4, and phosphatidylinosi-tol-3-OH kinase5. Specific tyrosine-to-phenylalanine substitutions in the PDGFR-β can prevent binding of one SH2-domain-containing protein without affecting binding of other receptor-associated proteins6,7. Here we use phospholipase C-γ (ref. 8) and PDGFR-β mutants9–11 to map specific tyrosines involved in both positive and negative regulation of chemotaxis towards the PDGF-BB homodimer. Our results indicate that a delicate balance of migration-promoting (phospholipase C-γ and phosphatidylinositol-3-OH kinase) and migration-suppressing (GAP) activities are recruited by the PDGFR-β to drive chemotaxis towards PDGF-BB.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Seppa, H., et al. J. Cell Biol. 92, 584–588 (1982).

    Article  CAS  Google Scholar 

  2. Hammacher, A., Mellstrom, K., Heldin, C. H. & Westermark, B. EMBO J. 8, 2489–2495 (1989).

    Article  CAS  Google Scholar 

  3. Kumjian, D. A., Wahl, M. I., Rhee, S. G. & Daniel, T. O. Proc. natn. Acad. Sci. U.S.A. 86, 8232–8236 (1989).

    Article  ADS  CAS  Google Scholar 

  4. Kaplan, D. R. et al. Cell 61, 125–133 (1990).

    Article  CAS  Google Scholar 

  5. Coughlin, S. R., Escobedo, J. A. & Williams, L. T. Science 243, 1191–1194 (1989).

    Article  ADS  CAS  Google Scholar 

  6. Fantl, W. J. et al. Cell 69, 413–423 (1992).

    Article  CAS  Google Scholar 

  7. Kashishian, A., Kazlauskas, A. & Cooper, J. A. EMBO J. 11, 1373–1382 (1992).

    Article  CAS  Google Scholar 

  8. Kim, H. K. et al. Cell 6, 435–441 (1991).

    Article  Google Scholar 

  9. Valius, M., Bazenet, C. & Kazlauskas, A. Molec. cell. Biol. 13, 133–143 (1993).

    Article  CAS  Google Scholar 

  10. Escobedo, J. A. & Williams, L. T. Nature 335, 85–87 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Morrison, D. K., Kaplan, D. R., Rhee, S. G. & Williams, L. T. Molec. cell. Biol. 10, 2359–2366 (1990).

    Article  CAS  Google Scholar 

  12. Boyden, S. J. exp. Med. 115, 453–466 (1962).

    Article  CAS  Google Scholar 

  13. Turker, M. S. et al. Cell biol. Toxicol. 4, 211–223 (1988).

    Article  CAS  Google Scholar 

  14. Ronnstrand, L. et al. EMBO J. 11, 3911–3919 (1992).

    Article  CAS  Google Scholar 

  15. Kashishian, A. & Cooper, J. A. Molec. biol. Cell 4, 49–57 (1993).

    Article  CAS  Google Scholar 

  16. Anderson, D. et al. Science 250, 979–982 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Yarden, Y. et al. Nature 323, 226–232 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Shariff, A. & Luna, E. J. Science 256, 245–248 (1992).

    Article  ADS  CAS  Google Scholar 

  19. Janmey, P. A. & Stossel, T. P. J. biol. Chem. 264, 4825–4831 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kundra, V., Escobedo, J., Kazlauskas, A. et al. Regulation of chemotaxis by the platelet-derived growth factor receptor-β. Nature 367, 474–476 (1994). https://doi.org/10.1038/367474a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/367474a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing