Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction

Abstract

THE steric model of muscle regulation holds that tropomyosin strands running along thin filaments move away from myosin-binding sites on actin when muscle is activated. Exposing these sites would permit actomyosin interaction and contraction to proceed. This compelling and widely cited model is based on changes observed in X-ray diffraction patterns of skeletal muscle following activation1–3. Although analysis of X-ray patterns can suggest models of filament structure, unambiguous interpretation is not possible. In contrast, three-dimensional reconstruction of thin-filament electron micrographs could, in principle, offer direct confirmation of the predicted tropomyosin movement, but so far tropomyosin in skeletal muscle has been resolved definitively only in the 'on' state but not in the 'off' state4. Thin filaments from the arthropod Limulus have a similar composition to those from vertebrate skeletal muscle5, and troponin–tropomyosin is distributed in both species with the same characteristic 38-nm periodicity6. Limulus thin filaments activate skeletal muscle myosin ATPase at micro-molar Ca2+ concentrations and confer a high calcium dependence on the enzyme. Arthropod and vertebrate troponin subunits form functional hybrids in vitro7 and the respective tropomyosins are functionally interchangeable8,9, arguing for a common mechanism of thin-filament-linked regulation in the two phyla. Here we report that tropomyosin is readily resolved in native filaments of troponin-regulated Limulus muscle in both the 'on' and 'off' states, and demonstrate tropomyosin movement, providing support for the importance of steric effects in muscle activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huxley, H. E. Cold Spring Harbor Symp. quant Biol. 37, 361–376 (1972).

    Article  Google Scholar 

  2. Haselgrove, J. C. Cold Spring Harbor Symp. quant. Biol. 37, 225–234 (1972).

    Google Scholar 

  3. Parry, D. A. D. & Squire, J. M. J. molec. Biol. 75, 33–55 (1973).

    Article  CAS  Google Scholar 

  4. Milligan, R. A., Whittaker, M. & Safer, D. Nature 348, 217–221 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Lehman, W., Regenstein, J. M. & Ransom, A. L. Biochim. biophys. Acta 434, 215–222 (1976).

    Article  CAS  Google Scholar 

  6. Lehman, W. J. molec. Biol. 154, 385–391 (1982).

    Article  CAS  Google Scholar 

  7. Lehman, W. Nature 255, 424–426 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Lehman, W. & Szent-Györgyi, A. G. J. gen. Physiol. 59, 375–387 (1975).

    Article  Google Scholar 

  9. Regenstein, J. M. & Szent-Györgyi, A. G. Biochemistry 14, 917–925 (1975).

    Article  CAS  Google Scholar 

  10. Bullard, B. et al. J. molec. Biol. 204, 621–637 (1988).

    Article  CAS  Google Scholar 

  11. Vibert, P., Craig, R. & Lehman, W. J. Cell Biol. 123, 313–321 (1993).

    Article  CAS  Google Scholar 

  12. Cohen, C. et al. Cold Spring Harbor Symp. quant. Biol. 37, 287–297 (1972).

    Article  Google Scholar 

  13. Flicker, P. F., Phillips, G. N. & Cohen, C. J. molec. Biol. 162, 495–501 (1982).

    Article  CAS  Google Scholar 

  14. Holmes, K. C. & Kabsch, W. Curr. Opin. Struct. Biol. 1, 270–280 (1991).

    Article  CAS  Google Scholar 

  15. Squire, J. M., Al-Khayat, H. A. & Yagi, N. J. chem. Soc. Farad. Trans. 89, 2717–2726 (1993).

    Article  CAS  Google Scholar 

  16. Seymour, J. & O'Brien, E. J. Nature 283, 680–682 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Toyoshima, C. & Wakabayashi, T. J. Biochem. (Tokyo) 97, 245–263 (1985).

    Article  CAS  Google Scholar 

  18. O'Brien, E. J., Couch, J., Johnson, G. R. P. & Morris, E. P. in Actin: Structure and Function in Muscle and Non-Muscle Cells (eds dosRemedios, C. G. & Barden, J. A.) 3–15 (Academic, North Ryde, NSW, Australia, 1983).

  19. Rayment, I. et al. Science 261, 58–65 (1993).

    Article  ADS  CAS  Google Scholar 

  20. Chalovich, J. M., Chock, P. B. & Eisenberg, E. J. biol. Chem. 256, 575–587 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Moody, C., Lehman, W. & Craig, R. J. Muscle Res. Cell Motil. 11, 176–185 (1990).

    Article  CAS  Google Scholar 

  22. DeRosier, D. J. & Moore, P. B. J. molec. Biol. 52, 355–369 (1970).

    Article  CAS  Google Scholar 

  23. Amos, L. A. & Klug, A. J. molec. Biol. 99, 51–73 (1975).

    Article  CAS  Google Scholar 

  24. Trachtenberg, S. & DeRosier, D. J. J. molec. Biol. 195, 581–601 (1987).

    Article  CAS  Google Scholar 

  25. Milligan, R. A. & Flicker, P. F. J. Cell Biol. 105, 29–39 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehman, W., Craig, R. & Vibert, P. Ca2+-induced tropomyosin movement in Limulus thin filaments revealed by three-dimensional reconstruction. Nature 368, 65–67 (1994). https://doi.org/10.1038/368065a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/368065a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing