Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes

Abstract

T LYMPHOCYTES of the α/β T-cell receptor (TCR) lineage mature in the thymus, where they undergo a series of differentiation, expansion and selection events1–7. For normal T-cell ontogeny to occur, thymocytes must interact physically with cortical and medullary thymic stroma cells8–10. In parallel, interactions of the thymic stromal cells with TCR-positive thymocytes are necessary for the development of the thymic medulla10–12. Comparable requirements for the differentiation of the cortex have not been defined, however. Here we analyse mutant mouse strains to assess the function of early prothymocytes in the induction of the thymic cortex. We find that animals with a developmental block at the earliest stage of T-lineage commitment lack a functional thymic cortex. This abnormality could be corrected in fetal but not adult animals by transplantation of either fetal or adult wild-type haematopoietic stem cells. Thus a developmentally restricted interaction of fetal stromal cells with early prothymocytes is required for the induction of a cortical microenvironment. In addition, a normal thymic architecture is necessary for sustained T-cell ontogeny.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ikuta, K., Uchida, N., Friedman, J. & Weissman, I. L. A. Rev. Immun. 10, 759–783 (1992).

    Article  CAS  Google Scholar 

  2. Boyd, R. L. & Hugo, P. Immun. Today 12, 71–79 (1991).

    Article  CAS  Google Scholar 

  3. Shortman, K., Egerton, M., Spangrude, G. J. & Scollay, R. Semin. Immun. 2, 3–12 (1990).

    CAS  Google Scholar 

  4. Scollay, R. Curr. Opin. Immun. 3, 204–209 (1991).

    Article  CAS  Google Scholar 

  5. Boyd, R. L. et al. Immun. Today 14, 445–459 (1993).

    Article  CAS  Google Scholar 

  6. von Boehmer, H. Cell 76, 219–228 (1994).

    Article  CAS  Google Scholar 

  7. Nossal, G. J. V. Cell 76, 229–239 (1994).

    Article  CAS  Google Scholar 

  8. Jenkinson, E. J. & Owen, J. J. T. Semin. Immun. 2, 51–60 (1990).

    CAS  Google Scholar 

  9. van Ewijk, W. A. Rev. Immun. 9, 591–615 (1991).

    Article  CAS  Google Scholar 

  10. Ritter, M. A. & Boyd, R. L. Immun. Today 14, 462–469 (1993).

    Article  CAS  Google Scholar 

  11. van Ewijk, W., Shores, E. W. & Singer, A. Immun. Today 15, 214–217 (1994).

    Article  CAS  Google Scholar 

  12. Shores, E. W., Van Ewijk, W. & Singer, A. Eur. J. Immun. 21, 1657–1661 (1991).

    Article  CAS  Google Scholar 

  13. Wang, B. et al. Proc. natn. Acad. Sci. U.S.A. 91, 9402–9406 (1994).

    Article  ADS  CAS  Google Scholar 

  14. Shinkai, Y. et al. Science 259, 822–825 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Godfrey, D. I. & Zlotnik, A. Immun. Today 14, 547–553 (1993).

    Article  CAS  Google Scholar 

  16. Mombaerts, P. et al. Cell 68, 869–877 (1992).

    Article  CAS  Google Scholar 

  17. Godfrey, D. I. et al. J. Immun. 152, 4783–4792 (1994).

    CAS  PubMed  Google Scholar 

  18. van Vliet, E., Melis, M. & Van Ewijk, W. Eur. J. Immun. 14, 524–532 (1984).

    Article  CAS  Google Scholar 

  19. van Ewijk, W. Am. J. Anat. 170, 311–330 (1984).

    Article  CAS  Google Scholar 

  20. Budd, R. C. et al. J. Immun. 138, 3120–3129 (1987).

    CAS  PubMed  Google Scholar 

  21. Yokoyama, W. et al. J. Immun. 141, 369–376 (1988).

    CAS  PubMed  Google Scholar 

  22. Bradley, L. M., Atkins, G. G. & Swain, S. L. J. Immun. 148, 324–331 (1992).

    CAS  Google Scholar 

  23. Roberts, R. The Mouse, its Reproduction and Development 253–259 (Oxford Univ. Press, Oxford, UK, 1990).

    Google Scholar 

  24. van Vliet, E. et al. Eur. J. Immun. 15, 677–681 (1985).

    Article  Google Scholar 

  25. Godfrey, D. I., Kennedy, J., Suda, T. & Zlotnik, A. J. Immun. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  26. Nezelof, C. Histopathology 21, 499–511 (1992).

    Article  CAS  Google Scholar 

  27. Wang, B. et al. Int. Immun. (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holländer, G., Wang, B., Nichogiannopoulou, A. et al. Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 373, 350–353 (1995). https://doi.org/10.1038/373350a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/373350a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing