Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4

Abstract

Smad2 and Smad4 are related tumour-suppressor proteins1,2, which, when stimulated by the growth factor TGF-β, form a complex to inhibit growth3. The effector function of Smad2 and Smad4 is located in the conserved carboxy-terminal domain (C domain) of these proteins and is inhibited by the presence of their amino-terminal domains (N domain)4,5. This inhibitory function of the N domain is shown here to involve an interaction with the C domain that prevents the association of Smad2 with Smad4. This inhibitory function is increased in tumour-derived forms of Smad2 and 4 that carry a missense mutation in a conserved N domain arginine residue. The mutant N domains have an increased affinity for their respective C domains, inhibit the Smad2–Smad4 interaction, and prevent TGFβ-induced Smad2–Smad4 association and signalling. Whereas mutations in the C domain disrupt the effector function of the Smad proteins, N-domain arginine mutations inhibit SMAD signalling through a gain of autoinhibitory function. Gain of autoinhibitory function is a new mechanism for inactivating tumour suppressors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of Smad4 and Smad2 domain interactions.
Figure 2: Inhibition of Smad2–Smad4 interaction by N domains.
Figure 5: Gain of autoinhibitory function of Smad4 and Smad2 N domain mutants.
Figure 3: Effect of N domain deletion and agonist-induced phosphorylation on Smad2–Smad4 interaction.
Figure 4: Biological activity of Smad2 and Smad4 containing tumour derived N-domain mutations.

Similar content being viewed by others

References

  1. Hahn, S. A. et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271, 350–353 (1996).

    Article  ADS  CAS  Google Scholar 

  2. Eppert, K. et al. MADR2 maps to 18q21 and encodes a TGF-β-regulated MAD-related protein that is functionally mutated in colorectal carcinoma. Cell 86, 543–552 (1996).

    Article  CAS  Google Scholar 

  3. Lagna, G., Hata, A., Hemmati-Brivanlou, A. & Massagué, J. Partnership between DPC4 and SMAD proteins in TGF-β signalling pathways. Nature 383, 832–836 (1996).

    Article  ADS  CAS  Google Scholar 

  4. Liu, F. et al. Ahuman Mad protein acting as a BMP-regulated transcriptional activator. Nature 381, 620–623 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Baker, J. & Harland, R. M. Anovel mesoderm inducer, mMadr-2, functions in the activin signal transduction pathway. Genes Dev. 10, 1880–1889 (1996).

    Article  CAS  Google Scholar 

  6. Massagué, J., Hata, A. & Liu, F. TGF-β signalling through the Smad pathway. Trends Cell Biol. 7, 187–192 (1997).

    Article  Google Scholar 

  7. Zhang, Y., Feng, X.-H., Wu, R.-Y. & Derynck, R. Receptor-associated Mad homologues synergize as effectors of the TGF-β response. Nature 383, 168–172 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Hoodless, P. A. et al. MADR1, a MAD-related protein that functions in BMP2 signaling pathways. Cell 85, 489–500 (1996).

    Article  CAS  Google Scholar 

  9. Macías-Silva, M. et al. MADR2 is a substrate of the TGFβ receptor and phosphorylation is required for nuclear accumulation and signaling. Cell 87, 1215–1224 (1996).

    Article  Google Scholar 

  10. Kretzschmar, M., Liu, F., Hata, A., Doody, J. & Massagué, J. The TGF-β family mediator Smad1 is phosphorylated directly and activated functionally by the BMP receptor kinase. Genes Dev. 11, 984–995 (1997).

    Article  CAS  Google Scholar 

  11. Wu, R.-Y., Zhang, Y., Feng, X.-H. & Derynck, R. Heteromeric and homomeric interactions correlated with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol. Cell. Biol. 17, 2521–2528 (1997).

    Article  CAS  Google Scholar 

  12. Shi, Y., Hata, A., Lo, R. S., Massagué, J. & Pavletich, N. P. Astructural basis for mutational inactivation of the tumour suppressor Smad4. Nature 388, 87–93 (1997).

    Article  ADS  CAS  Google Scholar 

  13. Cárcamo, J. et al. Type I receptors specify growth inhibitory and transcriptional responses to TGF-β and activin. Mol. Cell. Biol. 14, 3810–3821 (1994).

    Article  Google Scholar 

  14. Schutte, M. et al. DPC4 gene in various tumor types. Cancer Res. 56, 2527–2530 (1996).

    CAS  PubMed  Google Scholar 

  15. Kim, S. K. et al. DPC4, a candidate tumor suppressor gene, is altered infrequently in head and neck squamous cell carcinoma. Cancer Res. 56, 2519–2521 (1996).

    CAS  PubMed  Google Scholar 

  16. Nagatake, M. et al. Somatic in vivo alterations of the DPC4 gene at 18q21 in human lung cancers. Cancer Res. 56, 2718–2720 (1996).

    CAS  PubMed  Google Scholar 

  17. Barrett, M. T., Schutte, M., Kern, S. E. & Reid, B. J. Allelic loss and mutational analysis of the DPC4 gene in esophageal adenocarcinoma. Cancer Res. 56, 4351–4353 (1996).

    CAS  PubMed  Google Scholar 

  18. Riggins, G. J. et al. Mad-related genes in the human. Nature Genet. 13, 347–349 (1996).

    Article  CAS  Google Scholar 

  19. Uchida, K. et al. Somatic in vivo alternations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Res. 56, 5583–5585 (1996).

    CAS  PubMed  Google Scholar 

  20. Graff, J. M., Bansal, A. & Melton, D. A. Xenopus Mad proteins transduce distinct subsets of signals for the TGFβ superfamily. Cell 85, 479–487 (1996).

    Article  CAS  Google Scholar 

  21. Bartel, P. L., Chien, C.-T., Sternglanz, R. & Fields, S. in Cellular Interactions in Development: A Practical Approach(ed. Hartley, D. A.) 153 (Oxford University Press, Oxford, (1993)).

    Google Scholar 

  22. Vojtek, A. B., Hollenberg, S. M. & Cooper, J. A. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74, 205–214 (1993).

    Article  CAS  Google Scholar 

  23. Wrana, J. L., Attisano, L., Wieser, R., Ventura, F. & Massagué, J. Mechanism of activation of the TGF-β receptor. Nature 370, 341–347 (1994).

    Article  ADS  CAS  Google Scholar 

  24. Hemmati-Brivanlou, A. & Melton, D. A. Inhibition of activin receptor signalling promotes neuralization in Xenopus. Cell 77, 273–281 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Shi for recombinant Smad2 proteins, and I. Reynisdóttir, J. Doody and S. Lee for advice and technical assistance. G.L. thanks A. Hemmati-Brivanlou for support and advice. This work was supported by NIH Breast Spore and Cancer Center grants. D.W. is the recipient of a postdoctoral fellowship from the Human Frontier Science Program. A.H. is a research associate and J.M. an investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Massagué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hata, A., Lo, R., Wotton, D. et al. Mutations increasing autoinhibition inactivate tumour suppressors Smad2 and Smad4. Nature 388, 82–87 (1997). https://doi.org/10.1038/40424

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/40424

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing