Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cloning and characterization of a mammalian proton-coupled metal-ion transporter

Abstract

Metal ions are essential cofactors for a wealth of biological processes, including oxidative phosphorylation, gene regulation and free-radical homeostasis. Failure to maintain appropriate levels of metal ions in humans is a feature of hereditary haemochromatosis1, disorders of metal-ion deficiency, and certain neurodegenerative diseases2. Despite their pivotal physiological roles, however, there is no molecular information on how metal ions are actively absorbed by mammalian cells. We have now identified a new metal-ion transporter in the rat, DCT1, which has an unusually broad substrate range that includes Fe2+, Zn2+, Mn2+, Co2+, Cd2+, Cu2+, Ni2+ and Pb2+. DCT1 mediates active transport that is proton-coupled and depends on the cell membrane potential. It is a 561-amino-acid protein with 12 putative membrane-spanning domains and is ubiquitously expressed, most notably in the proximal duodenum. DCT1 is upregulated by dietary iron deficiency, and may represent a key mediator of intestinal iron absorption. DCT1 is a member of the ‘natural-resistance-associated macrophage protein’ (Nramp) family3,4,5 and thus its properties provide insight into how these proteins confer resistance to pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Uptake of 10 µM 55Fe in Xenopus oocytes injected with poly(A)+RNA from normal or iron-de.
Figure 2: Sequence alignment of DCT1 and Nramp-related polypeptides.
Figure 3: High-stringency northern blot analysis of RNA from rat tissues probed with 32P-labelled DCT1 cDNA.
Figure 4: Tissue localization of rat DCT1 mRNA detected by in situ hybridization.
Figure 5: Currents associated with the divalent cation transporter DCT1 expressed in oocytes.

Similar content being viewed by others

References

  1. Feder, J. N. et al. Anovel MHC class I-like gene is mutated in patients with hereditary haemochromatosis. Nature Genet. 13, 399–408 (1996).

    Article  CAS  Google Scholar 

  2. Hirsch, E. C. Biochemistry of Parkinson's disease with special reference to the dopaminergic systems. Mol. Neurol. 94, 135–142 (1997).

    Google Scholar 

  3. Gruenheid, S., Cellier, M., Vidal, S. & Gros, P. Identification and characterization of a second mouse Nramp gene. Genomics 25, 514–525 (1995).

    Article  CAS  Google Scholar 

  4. Vidal, S., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485 (1993).

    Article  CAS  Google Scholar 

  5. Vidal, S., Gros, P. & Skamene, E. Natural resistance to infection with intracellular parasites: molecular genetics identifies Nramp1 as the Bcg/Ity/Lsh locus. J. Leuk. Biol. 58, 382–390 (1995).

    Article  CAS  Google Scholar 

  6. Conrad, M. E., Umbreit, J. N., Moore, E. G. & Heiman, D. Mobilferrin is an intermediate in iron transport between transferrin and hemoglobin in K562 cells. J. Clin. Invest. 98, 1449–1454 (1996).

    Article  CAS  Google Scholar 

  7. Raja, K. B., Simpson, R. J. & Peters, T. J. Investigation of a role for reduction in ferric iron uptake by mouse duodenum. Biochim. Biophys. Acta 1135, 141–146 (1992).

    Article  CAS  Google Scholar 

  8. Jordan, I. & Kaplan, J. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity. Biochem. J. 302, 875–879 (1994).

    Article  CAS  Google Scholar 

  9. Han, O., Failla, M. L., Hill, A. D., Morris, E. R. & Smith, J. C. Reduction of Fe(III) is required for uptake of nonheme iron by Caco-2 cells. J. Nutr. 125, 1291–1299 (1995).

    CAS  PubMed  Google Scholar 

  10. Dorey, C. et al. Iron speciation at physiological pH in media containing ascorbate and oxyten. Br. J. Nutr. 70, 157–169 (1993).

    Article  CAS  Google Scholar 

  11. Eide, D. J. Molecular biology of iron and zinc uptake in eukaryotes. Curr. Opin. Cell Biol. (in the press).

  12. Palmiter, R. D., Cole, T. B., Quaife, C. J. & Findley, S. D. ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc. Natl Acad. Sci. USA 93, 14934–14939 (1996).

    Article  ADS  CAS  Google Scholar 

  13. Bull, P. & Cox, D. W. Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet. 10, 246–252 (1994).

    Article  CAS  Google Scholar 

  14. Nussberger, S. et al. Symmetry of H+ binding to the intra- and extracellular side of the H+-coupled oligopeptide cotransporter PepT1. J. Biol. Chem. 272, 7777–7785 (1997).

    Article  CAS  Google Scholar 

  15. Mackenzie, B. et al. Mechanisms of the human intestinal H+-coupled oligopeptide transporter hPEPT1. J. Biol. Chem. 271, 5430–5437 (1996).

    Article  CAS  Google Scholar 

  16. Boorer, K. J., Loo, D. D. F. & Wright, E. M. Steady-state and presteady-state kinetics of the H+/hexose cotransporter (STP1) from Arabidopsis thaliana expressed in Xenopus oocytes. J. Biol. Chem. 269, 20417–20424 (1994).

    CAS  PubMed  Google Scholar 

  17. Mager, S. et al. Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10, 177–188 (1993).

    Article  CAS  Google Scholar 

  18. McEwan, G. T. A., Daniel, H., Fett, C., Burgess, M. N. & Lucas, M. L. The effect of Escherichia coli STa enterotoxin and other secretagogues on mucosal surface pH of rat small intestine in vivo. Proc. R. Soc. Lond. 234, 219–237 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Mackenzie, B., Loo, D. D. F. & Wright, E. M. Coupling stoichiometry for the Na+/glucose cotransporter SGLT1.(manuscript in preparation).

  20. Boorer, K. J. et al. Kinetics and specificity of a H+/amino acid transporter from Arabidopsis thaliana J. Biol. Chem. 271, 2213–2220 (1996).

    Article  CAS  Google Scholar 

  21. Mackenzie, B., Loo, D. D. F., Panayotova-Heiermann, M. & Wright, E. M. Biophysical characteristics of the pig kidney Na+/glucose cotransporter SGLT2 reveal a common mechanism for SGLT1 and SGLT2. J. Biol. Chem. 271, 32678–32683 (1996).

    Article  CAS  Google Scholar 

  22. Jauch, P. & Läuger, P. Electrogenic properties of the sodium–alanine cotransporter in pancreatic acinar cells: II. Comparison with transport models. J. Membr. Biol. 94, 117–127 (1986).

    Article  CAS  Google Scholar 

  23. Gunshin, H., Noguchi, T. & Naito, H. Effect of calcium on the zinc uptake by brush border membrane vesicles isolated from the rat small intestine. Agric. Biol. Chem. 55, 2813–2816 (1991).

    CAS  Google Scholar 

  24. Casey, J. L. et al. Iron-responsive elements: regulatory RNA sequences that control mRNA levels and translation. Science 240, 924–928 (1988).

    Article  ADS  CAS  Google Scholar 

  25. Klausner, R. D., Rouault, T. A. & Harford, J. B. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72, 19–28 (1993).

    Article  CAS  Google Scholar 

  26. Nichols, G. M. & Bacon, B. R. Hereditary hemochromatosis: pathogenesis and clinical features of a common disease. Am. J. Gastroenterol. 84, 851–862 (1989).

    CAS  PubMed  Google Scholar 

  27. Supek, F., Supekova, L., Nelson, H. & Nelson, N. Ayeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc. Natl Acad. Sci. USA 93, 5105–5110 (1996).

    Article  ADS  CAS  Google Scholar 

  28. Hediger, M. A. & Rhoads, D. Molecular physiology of sodium–glucose cotransporters. Physiol. Rev. 74, 993–1026 (1994).

    Article  CAS  Google Scholar 

  29. Schaeren-Wiemers, N. & Gerfin-Moser, A. Asingle protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440 (1993).

    Article  CAS  Google Scholar 

  30. Romero, M. F., Hediger, M. A., Boulpaep, E. L. & Boron, W. F. Expression cloning of the renal electrogenic Na+/HCO3 cotransporter. Nature 387, 409–413 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Nramp cDNA was a generous gift from P. Gros. We thank D. Eide for stimulating discussion. This research was supported by the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Gunshin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gunshin, H., Mackenzie, B., Berger, U. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997). https://doi.org/10.1038/41343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/41343

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing