Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Double identity for proteins of the Bcl-2 family

Abstract

Bcl-2 is an oncogenic protein that acts by inhibiting programmed cell death. The mechanisms used by this and related anti-apoptotic proteins to protect cells from cytotoxic stimuli are now emerging, with the discovery that Bcl-2 can function both as an ion channel and as an adaptor or docking protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Model for CED-4-mediated bridging of Bcl-2/Bcl-XL to caspases.
Figure 2: Multifunctional Bcl-2 protein.
Figure 3: Multifunctional Bcl-2 protein.

Similar content being viewed by others

References

  1. Tsujimoto, Y. & Croce, C. M. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc. Natl Acad. Sci. USA 83, 5214–5218 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Muchmore, S. W. et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335–341 (1996).

    Article  ADS  CAS  Google Scholar 

  3. Baffy, G., Miyashita, T., Williamson, J. R. & Reed, J. C. Apoptosis induced by withdrawal of interleukin-3 (IL-3) from an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J. Biol. Chem. 268, 6511–6519 (1993).

    CAS  PubMed  Google Scholar 

  4. Lam, M. et al. Evidence that Bcl-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2+fluxes. Proc. Natl Acad. Sci. USA 91, 6569–6573 (1994).

    Article  ADS  CAS  Google Scholar 

  5. Ryan, J. J. et al. c-myc and bcl-2 modulate p53 function by altering p53 subcellular trafficking during the cell cycle. Proc. Natl Acad. Sci. USA 91, 5878–5882 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Minn, A. J. et al. Bcl-xLforms an ion channel in synthetic lipid membranes. Nature 385, 353–357 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Schendel, S. L. et al. Channel formation by anti-apoptotic protein, Bcl-2. Proc. Natl Acad. Sci. USA 94, 5113–5118 (1997).

    Article  ADS  CAS  Google Scholar 

  8. Montal, M. Protein folds in channel structure. Curr. Opin. Struct. Biol. 6, 499–510 (1996).

    Article  CAS  Google Scholar 

  9. Chen, J. et al. bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations. Proc. Natl Acad. Sci. USA 93, 7042–7047 (1996).

    Article  ADS  CAS  Google Scholar 

  10. Middleton, G., Nunez, G. & Davies, A. M. Bax promotes neuronal survival and antagonises the survival effects of neurotrophic factors. Development 122, 695–701 (1996).

    CAS  PubMed  Google Scholar 

  11. Kiefer, M. C. et al. Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak. Nature 374, 736–739 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Bernardi, P., Broekemeier, K. M. & Pfeiffer, D. R. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J. Bioenerget. Biomembr. 26, 509–517 (1994).

    Article  CAS  Google Scholar 

  13. Zoratti, M. & Szabo, I. Electrophysiology of the inner mitochondrial membrane. J. Bioenerget. Biomembr. 26, 543–553 (1996).

    Article  Google Scholar 

  14. Petit, P. X., Susin, S.-A., Zamzami, N., Mignotte, B. & Kroemer, G. Mitochondria and programmed cell death: back ot the future. FEBS Lett. 396, 7–13 (1996).

    Article  CAS  Google Scholar 

  15. Susin, S. A. et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J. Exp. Med. 184, 1331–1342 (1996).

    Article  CAS  Google Scholar 

  16. Xiang, J., Chao, D. T. & Korsmeyer, S. J. BAX-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA 93, 14559–14563 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. & Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).

    Article  CAS  Google Scholar 

  18. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).

    Article  CAS  Google Scholar 

  19. Häcker, G. & Vaux, D. L. Asticky business. Curr. Biol. 5, 622–624 (1995).

    Article  Google Scholar 

  20. Yuan, J. Y. & Horvitz, H. R. The Caenorhabditis elegans genes ced-3 and ced-4 act cell autonomously to cause programmed cell death. Dev. Biol. 138, 33–41 (1990).

    Article  CAS  Google Scholar 

  21. Shaham, S. & Horvitz, H. R. Developing Caenorhabditis elegans neurons may contain both cell-death protective and killer activities. Genes Dev. 10, 578–591 (1996).

    Article  CAS  Google Scholar 

  22. Spector, M. S., Desnoyers, S., Heoppner, D. J. & Hengartner, M. O. Interaction between the C. elegans cell-death regulators CED-9 and CED-4. Nature 275, 1122–1126 (1997).

    Google Scholar 

  23. Chinnaiyan, A. M., O'Rourke, K., Lane, B. R. & Dixit, V. M. Interaction of CED-4 with CED-3 and CED-9: a molecular framework for cell death. Science 275, 1122–1126 (1997).

    Article  CAS  Google Scholar 

  24. Wu, D., Wallen, H. D. & Nunez, G. Interaction and regulation of subcellular localization of CED-4 by CED-9. Science 275, 1126–1129 (1997).

    Article  CAS  Google Scholar 

  25. Shaham, S. & Horvitz, H. R. An alternatively spliced C. elegans ced-4 RNA encodes a novel cell death inhibitor. Cell 86, 201–208 (1996).

    Article  CAS  Google Scholar 

  26. Wang, H. G., Rapp, U. R. & Reed, J. C. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 87, 629–638 (1996).

    Article  CAS  Google Scholar 

  27. Zha, J., Harada, H., Yang, E., Jockel, J. & Korsmeyer, S. J. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3–3 not BCL-XL. Cell 87, 619–628 (1996).

    Article  CAS  Google Scholar 

  28. Wang, H.-G., Takayama, S., Rapp, U. R. & Reed, J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc. Natl Acad. Sci. USA 93, 7063–7068 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Sattler, M. et al. Structure of Bcl-xL–Bak peptide complex: recognition between regulators of apoptosis. Science 275, 983–986 (1997).

    Article  CAS  Google Scholar 

  30. Diaz, J.-L. et al. Acommon binding site mediates heterodimerization and homodimerization of Bcl-2 family members. J. Biol. Chem. 272, 11350–11355 (1997).

    Article  CAS  Google Scholar 

  31. Shibasaki, F., Kondo, E., Akagi, T. & McKeon, F. Suppression of signalling through NF-AT by interactions between calcineurin and Bcl-2. Nature 386, 728–731 (1997).

    Article  ADS  CAS  Google Scholar 

  32. Shibasaki, F. & McKeon, F. Calcineurin functions in Ca2+-activated cell death in mammalian cells. J. Cell Biol. 131, 735–743 (1995).

    Article  CAS  Google Scholar 

  33. Pietenpol, J. A. et al. Paradoxical inhibition of solid tumor cell growth by bcl-2. Cancer Res. 54, 3714–3717 (1994).

    CAS  PubMed  Google Scholar 

  34. Linette, G. P., Li, Y., Roth, K. & Korsmeyer, S. J. Cross talk between cel death and cell cycle progression: BCL-2 regulates NFAT-medicated activation. Proc. Natl Acad. Sci. USA 93, 9545–9552 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Huang, D. C. S., O'Reilly, L. A., Strasser, & Cory, S. The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J.(in the press).

  36. Haldar, S., Jena, N. & Croce, C. M. Inactivation of Bcl-2 by phosphorylation. Proc. Natl Acad. Sci. USA 92, 4507–4511 (1995).

    Article  ADS  CAS  Google Scholar 

  37. Chang, B. S., Minn, A. J., Muchmore, S. W., Fesik, S. W. & Thompson, C. B. Identification of a novel regulatory domain in Bcl-xLand Bcl-2. EMBO J. 16, 968–977 (1997).

    Article  CAS  Google Scholar 

  38. Naumovski, L. & Cleary, M. L. The p53-binding protein 53BP2 also interacts with Bcl-2 and impedes cell cycle progression at G2/M. Mol. Cell. Biol. 16, 3884–3892 (1996).

    Article  CAS  Google Scholar 

  39. Krajewski, S. et al. Investigations of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 53, 4701–4714 (1993).

    CAS  PubMed  Google Scholar 

  40. Kane, D. J., örd, T., Anton, R. & Bredesen, D. E. Expression of Bcl-2 inhibits necrotic neural cell death. J. Neurosci. Res. 40, 269–275 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank M. Montal, S. Schendel and S. Choe for discussions on channel proteins, and D. Bredesen and G. Salvesen for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, J. Double identity for proteins of the Bcl-2 family. Nature 387, 773–776 (1997). https://doi.org/10.1038/42867

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/42867

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing