Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Assessing tumors in living animals through measurement of urinary β-human chorionic gonadotropin

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunostaining of β-hCG in EMT6-CG cells.
Figure 2: Mouse urine collection system.
Figure 3: Time course of urinary β-hCG after tumor cell inoculation.
Figure 4: Relationship between urinary β-hCG levels and tumor weights.
Figure 5: β-hCG levels after therapy.

References

  1. Williams, N.N. et al. Growth-factor-independence and invasive properties of colorectal carcinoma cells. Int. J. Cancer 50, 274–280 (1992).

    Article  CAS  Google Scholar 

  2. Kerbel, R.S. What is the optimal rodent model for anti-tumor drug testing? Cancer Metastasis Rev. 17, 301–304 (1998).

    Article  Google Scholar 

  3. Staroselsky, A.N. et al. The use of molecular genetic markers to demonstrate the effect of organ environment on clonal dominance in a human renal-cell carcinoma grown in nude mice. Int. J. Cancer 51, 130–138 (1992).

    Article  CAS  Google Scholar 

  4. Fidler, I.J., Wilmanns, C., Straroselsky, A., Dong, Z. & Fan, D. Modulation of tumor cell response to chemotherapy by the organ environment. Cancer Metastasis Rev. 13, 209–222 (1994).

    Article  CAS  Google Scholar 

  5. Killion, J.J., Radinsky, R. & Fidler, I.J. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. Cancer Metastasis Rev. 17, 279–284 (1998).

    Article  Google Scholar 

  6. Wilmanns, C., Fan, D., O'Brian, C.A., Bucana, C.D. & Fidler, I.J. Orthotopic and ectopic organ environments differentially influence the sensitivity of murine colon carcinoma cells to doxorubicin and 5-fluorouracil. Int. J. Cancer 52, 98–104 (1992).

    Article  CAS  Google Scholar 

  7. Cole, L.A. hCG, its free subunits and its metabolites. Roles in pregnancy and trophoblastic disease. J. Reprod. Med. 43, 3–10 (1998).

    CAS  PubMed  Google Scholar 

  8. Wu, A.H., Wong, S.S., Waldron, C. & Chan, D.W. Automated quantification of choriogonadotropin: Analytical correlation between serum and urine with creatinine correction. Clin. Chem. 33, 1424–1426 (1987).

    CAS  PubMed  Google Scholar 

  9. Shih, I.-M., Mazur, M.T. & Kurman, R.J. in Diagnostic Surgical Pathology (ed. Sternberg, S.S.) 2067–2086 (Williams & Wilkins, New York, 1999).

    Google Scholar 

  10. Kanazawa, K. et al. Establishment and characterization of a subline predisposed to pulmonary metastasis from a human gestational choriocarcinoma cell line in nude mice. Acta Obstet. Gynecol. Scand. 68, 429–434 (1989).

    Article  CAS  Google Scholar 

  11. Takahashi, Y., Ueno, M. & Mai, M. Establishment of a human chorionic gonadotropin-producing human gastric carcinoma in nude mice. J. Surg. Oncol. 48, 96–100 (1991).

    Article  CAS  Google Scholar 

  12. Kellen, J.A., Kolin, A. & Acevedo, H.F. Effects of antibodies to choriogonadotropin in malignant growth. I. Rat 3230 AC mammary adenocarcinoma. Cancer 49, 2300–2304 (1982).

    Article  CAS  Google Scholar 

  13. Raikow, R.B. et al. Humoral response of normal and athymic (nude) mice to human choriogonadotropin immunogens. Am. J. Reprod. Immunol. Microbiol. 12, 99–102 (1986).

    Article  CAS  Google Scholar 

  14. Newman, D.J. & Price, C.P. in Tietz Textbook of Clinical Chemistry (eds. Burtis, C.A. & Ashwood, E.R.) 1204–1270 (W.B. Saunders, Philadelphia, 1999).

    Google Scholar 

  15. Culver, K.W. et al. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552 (1992).

    Article  CAS  Google Scholar 

  16. Caruso, M. et al. Regression of established macroscopic liver metastases after in situ transduction of a suicide gene. Proc. Natl. Acad. Sci. USA 90, 7024–7028 (1993).

    Article  CAS  Google Scholar 

  17. Pesce, A.J., Bubel, H.C., DiPersio, L. & Michael, J.G. Human lactic dehydrogenase as a marker for human tumor cells grown in athymic mice. Cancer Res. 37, 1998–2003 (1977).

    CAS  PubMed  Google Scholar 

  18. DiPersio, L., Kyriazis, A.P., Michael, J.G. & Pesce, A.J. Monitoring the therapy of human tumor xenografts in nude mice by the use of lactate dehydrogenase. J. Natl. Cancer. Inst. 62, 375–379 (1979).

    CAS  PubMed  Google Scholar 

  19. Marini, F.C. III, Nelson, J.A. & Lapeyre, J.N. Assessment of bystander effect potency produced by intratumoral implantation of HSVtk-expressing cells using surrogate marker secretion to monitor tumor growth kinetics. Gene Ther. 2, 655–659 (1995).

    CAS  PubMed  Google Scholar 

  20. Yang, M. et al. A fluorescent orthotopic bone metastasis model of human prostate cancer. Cancer Res. 59, 781–786 (1999).

    CAS  PubMed  Google Scholar 

  21. Sweeney, T.J. et al. Visualizing the kinetics of tumor-cell clearance in living animals. Proc. Natl. Acad. Sci. USA 96, 12044–12049 (1999).

    Article  CAS  Google Scholar 

  22. MacLaren, D.C. et al. Repetitive, noninvasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther. 6, 785–791 (1999).

    Article  CAS  Google Scholar 

  23. Galons, J.-P., Altbach, M.I., Paine-Murrieta, G.D., Taylor, C.W. & Gillies, R.J. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by noninvasive diffusion magnetic resonance imaging. Neoplasia 1, 113–117 (1999).

    Article  CAS  Google Scholar 

  24. Stegman, L.D. et al. Noninvasive quantitation of cytosine deaminase transgene expression in human tumor xenografts with in vivo magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 96, 9821–9826 (1999).

    Article  CAS  Google Scholar 

  25. Jacobs, A. et al. Functional coexpression of HSV-1 thymidine kinase and green fluorescent protein: implications for noninvasive imaging of transgene expression. Neoplasia 1, 154–161 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Johns Hopkins Oncology Center Cell Imaging Core Facility for help with photography. This work was supported by the Clayton Fund and National Institutes of Health grants CA 57345, CA 43460 and CA 62924.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Vogelstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shih, IM., Torrance, C., Sokoll, L. et al. Assessing tumors in living animals through measurement of urinary β-human chorionic gonadotropin. Nat Med 6, 711–714 (2000). https://doi.org/10.1038/76299

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/76299

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing