Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing

Abstract

Secretory leukocyte protease inhibitor (SLPI) is a serine protease inhibitor with anti-microbial properties found in mucosal fluids. It is expressed during cutaneous wound healing. Impaired healing states are characterized by excessive proteolysis and often bacterial infection, leading to the hypothesis that SLPI may have a role in this process. We have generated mice null for the gene encoding SLPI (Slpi), which show impaired cutaneous wound healing with increased inflammation and elastase activity. The altered inflammatory profile involves enhanced activation of local TGF-β in Slpi-null mice. We propose that SLPI is a pivotal endogenous factor necessary for optimal wound healing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SLPI is expressed during normal wound repair.
Figure 2: Delayed wound healing in Slpi-null mice.
Figure 3: Increased inflammation in the Slpi-null wounds.
Figure 4: The absence of SLPI leads to increased wound elastase activity and reduced matrix.
Figure 5: Exogenous SLPI reverses the impaired wound healing phenotype in Slpi-null mice.
Figure 6: TGF-β activation, but not RNA, is increased in the absence of SLPI.
Figure 7: Neutralization of TGF-β accelerates healing in the Slpi-null mice.

Similar content being viewed by others

References

  1. Seemuller, U. et al. The acid-stable proteinase inhibitor of human mucous secretions (HUSI-I, antileukoprotease). Complete amino acid sequence as revealed by protein and cDNA sequencing and structural homology to whey proteins and Red Sea turtle proteinase inhibitor. FEBS Lett. 199, 43 –48 (1986).

    Article  CAS  Google Scholar 

  2. Eisenberg, S.P., Hale, K.K., Heimdal, P. & Thompson, R.C. Location of the protease-inhibitory region of secretory leukocyte protease inhibitor. J. Biol. Chem. 265, 7976– 7981 (1990).

    CAS  PubMed  Google Scholar 

  3. Stetler, G., Brewer, M.T. & Thompson, R.C. Isolation and sequence of a human gene encoding a potent inhibitor of leukocyte proteases. Nucleic Acids Res. 14, 7883–7896 (1986).

    Article  CAS  Google Scholar 

  4. Thompson, R.C. & Ohlsson, K. Isolation, properties, and complete amino acid sequence of human secretory leukocyte protease inhibitor, a potent inhibitor of leukocyte elastase. Proc. Natl Acad. Sci. USA 83, 6692–6696 ( 1986).

    Article  CAS  Google Scholar 

  5. Franzke, C.W., Baici, A., Bartels, J., Christophers, E. & Wiedow, O. Antileukoprotease inhibits stratum corneum chymotryptic enzyme. Evidence for a regulative function in desquamation . J. Biol. Chem. 271, 21886– 21890 (1996).

    Article  CAS  Google Scholar 

  6. Pemberton, A.D., Huntley, J.F. & Miller, H.R. Differential inhibition of mast cell chymases by secretory leukocyte protease inhibitor. Biochim. Biophys. Acta. 1379, 29–34 ( 1998).

    Article  CAS  Google Scholar 

  7. McNeely, T.B. et al. Secretory leukocyte protease inhibitor: a human saliva protein exhibiting anti-human immunodeficiency virus 1 activity in vitro. J. Clin. Invest. 96, 456–464 (1995).

    Article  CAS  Google Scholar 

  8. McNeely, T.B. et al. Inhibition of human immunodeficiency virus type 1 infectivity by secretory leukocyte protease inhibitor occurs prior to viral reverse transcription . Blood 90, 1141–1149 (1997).

    CAS  PubMed  Google Scholar 

  9. Tomee, J.F., Hiemstra, P.S., Heinzel-Wieland, R. & Kauffman, H.F. Antileukoprotease: an endogenous protein in the innate mucosal defense against fungi. J. Infect. Dis. 176, 740– 747 (1997).

    Article  CAS  Google Scholar 

  10. Zhang, Y., DeWitt, D.L., McNeely, T.B., Wahl, S.M. & Wahl, L.M. Secretory leukocyte protease inhibitor suppresses the production of monocyte prostaglandin H synthase-2, prostaglandin E2, and matrix metalloproteinases. J. Clin. Invest. 99, 894–900 (1997).

    Article  CAS  Google Scholar 

  11. Song, X.-Y. et al. Secretory leukocyte protease inhibitor suppresses the inflammation and joint damage of bacterial cell wall-induced arthritis. J. Exp. Med. 190, 535–542 ( 1999).

    Article  CAS  Google Scholar 

  12. Schiessler, H., Fink, E. & Fritz, H. Acid-stable proteinase inhibitors from human seminal plasma. Methods Enzymol. 45, 847– 859 (1976).

    Article  CAS  Google Scholar 

  13. Hiemstra, P.S., van Wetering, S. & Stolk, J. Neutrophil serine proteinases and defensins in chronic obstructive pulmonary disease: effects on pulmonary epithelium . Eur. Respir. J. 12, 1200– 1208 (1998).

    Article  CAS  Google Scholar 

  14. Wingens, M. et al. Induction of SLPI (ALP/HUSI-I) in epidermal keratinocytes . J. Invest. Dermatol. 111, 996– 1002 (1998).

    Article  CAS  Google Scholar 

  15. Wiedow, O., Harder, J., Bartels, J., Streit, V. & Christophers, E. Antileukoprotease in human skin: an antibiotic peptide constitutively produced by keratinocytes. Biochem. Biophys. Res. Commun. 248, 904–909 (1998).

    Article  CAS  Google Scholar 

  16. Jin, F.Y., Nathan, C., Radzioch, D. & Ding, A. Secretory leukocyte protease inhibitor: a macrophage product induced by and antagonistic to bacterial lipopolysaccharide. Cell 88, 417–426 (1997).

    Article  CAS  Google Scholar 

  17. Weiss, S.J., Curnutte, J.T. & Regiani, S. Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J. Immunol. 136, 636–641 (1986).

    CAS  PubMed  Google Scholar 

  18. Herrick, S. et al. Up-regulation of elastase in acute wounds of healthy aged humans and chronic venous leg ulcers are associated with matrix degradation . Lab. Invest. 77, 281– 288 (1997).

    CAS  PubMed  Google Scholar 

  19. Grinnell, F. & Zhu, M. Identification of neutrophil elastase as the proteinase in burn wound fluid responsible for degradation of fibronectin. J. Invest. Dermatol. 103, 155–161 (1994).

    Article  CAS  Google Scholar 

  20. Ashcroft, G.S., Greenwell-Wild, T., Horan, M.A., Wahl, S.M. & Ferguson, M.W. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am. J. Pathol. 155, 1137–1146 (1999).

    Article  CAS  Google Scholar 

  21. McDonald, J.A. & Kelley, D.G. Degradation of fibronectin by human leukocyte elastase. J. Biol. Chem. 255, 8848–8858 (1980).

    CAS  PubMed  Google Scholar 

  22. Scuderi, P., Nez, P.A., Duerr, M.L., Wong, B.J. & Valdez, C.M. Cathepsin-G and leukocyte elastase inactivate human tumor necrosis factor and lymphotoxin. Cell Immunol. 135, 299–313 (1991).

    Article  CAS  Google Scholar 

  23. Kafienah, W., Buttle, D.J., Burnett, D. & Hollander, A.P. Cleavage of type I collagen by human neutrophil elastase. Biochem. J. 330, 897–902 ( 1998).

    Article  CAS  Google Scholar 

  24. Ferry, G. et al. Activation of MMP-9 by neutrophil elastase in an in vivo model of acute lung injury. FEBS Lett. 3, 111– 115 (1997).

    Article  Google Scholar 

  25. Wahl, S.M. et al. Transforming growth factor type β induces monocyte chemotaxis and growth factor production. Proc. Natl Acad. Sci. USA 84, 5788–5792 (1987).

    Article  CAS  Google Scholar 

  26. Frank, S., Madlener, M. & Werner, S. Transforming growth factors β1, β2, and β3 and their receptors are differentially regulated during normal and impaired wound healing. J. Biol. Chem. 271, 10188 –10193 (1996).

    Article  CAS  Google Scholar 

  27. Lentsch, A.B. et al. Inhibition of NF-κB activation and augmentation of IκBβ by secretory leukocyte protease inhibitor during lung inflammation. Am. J. Pathol. 154, 239–247 (1999).

    Article  CAS  Google Scholar 

  28. Shah, M., Foreman, D.M. & Ferguson, M.W. Neutralisation of TGF-β 1 and TGF-β 2 or exogenous addition of TGF-β 3 to cutaneous rat wounds reduces scarring . J. Cell Sci. 108, 985– 1002 (1995).

    CAS  PubMed  Google Scholar 

  29. Ashcroft, G.S. et al. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-β1 levels. Nature Med. 3, 1209–1215 (1997).

    Article  CAS  Google Scholar 

  30. Ashcroft, G.S. Bidirectional regulation of macrophage function by TGF-β. Microbes Infect. 1, 1275–1282 (1999).

    Article  CAS  Google Scholar 

  31. Barcellos-Hoff, M.H., Derynck, R., Tsang, M.L. & Weatherbee, J.A. Transforming growth factor-β activation in irradiated murine mammary gland. J. Clin. Invest. 93, 892– 899 (1994).

    Article  CAS  Google Scholar 

  32. Nunes, I., Shapiro, R.L. & Rifkin, D.B. Characterization of latent TGF-β activation by murine peritoneal macrophages. J. Immunol. 155, 1450–1459 (1995).

    CAS  PubMed  Google Scholar 

  33. Raghunath, M. et al. The cutaneous microfibrillar apparatus contains latent transforming growth factor-β binding protein-1 (LTBP-1) and is a repository for latent TGF-β1. J. Invest. Dermatol. 111, 559 –564 (1998).

    Article  CAS  Google Scholar 

  34. Taipale, J., Lohi, J., Saarinen, J., Kovanen, P.T. & Keski-Oja, J. Human mast cell chymase and leukocyte elastase release latent transforming growth factor-β 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J. Biol. Chem. 270, 4689–4696 ( 1995).

    Article  CAS  Google Scholar 

  35. Heine, U.I. et al. Transforming growth factor-beta 1 specifically localizes in elastin during synovial inflammation: an immunoelectron microscopic study . Arch. Geschwulstforsch. 60, 289– 294 (1990).

    CAS  PubMed  Google Scholar 

  36. Odekon, L.E., Blasi, F. & Rifkin, D.B. Requirement for receptor-bound urokinase in plasmin-dependent cellular conversion of latent TGF-β to TGF-β. J. Cell Physiol. 158, 398–407 ( 1994).

    Article  CAS  Google Scholar 

  37. Sankar, G., May, M.J. & Kopp, E.B. NK-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 161, 6297–6304 (1998).

    Google Scholar 

  38. Ashcroft, G.S. et al. Mice lacking Smad3 show accelerated wound healing and an impaired local inflammatory response. Nature Cell Biol. 1, 260–266 (1999).

    Article  CAS  Google Scholar 

  39. Karonen, T., Jeskanen, L. & Keski-Oja, J. Transforming growth factor β 1 and its latent form binding protein-1 associate with elastic fibres in human dermis: accumulation in actinic damage and absence in anetoderma. Br. J. Dermatol. 137, 51–58 (1997).

    Article  CAS  Google Scholar 

  40. Grosso, L.E. & Scott, M.P. GAIPG, a repeated hexapeptide of bovine and human tropoelastin, is chemotactic for neutrophils and Lewis lung carcinoma cells. Arch. Biochem. Biophys. 305, 401–404 (1993).

    Article  CAS  Google Scholar 

  41. Cergneux, M., Andersen, E. & Cimasoni, G. In vitro breakdown of gingival tissue by elastase from human polymorphonuclear leukocytes. An electron microscopic study. J. Periodontal Res. 17, 169–182 (1982).

    Article  CAS  Google Scholar 

  42. Wahl, S.M. Transforming growth factor β: the good, the bad, and the ugly. J. Exp. Med. 180, 1587–1590 (1994).

    Article  CAS  Google Scholar 

  43. Bosch, J.J., Zuyderhoudt, K.S., Houtkooper, F.M. & van Gool J. Histophotometric estimation of volume density of collagen as an indication of fibrosis in rat liver. Histochemistry 85, 129–133 (1986).

    Article  Google Scholar 

  44. Barcellos-Hoff, M.H. et al. Immunohistochemical detection of active transforming growth factor-β in situ using engineered tissue. Am. J. Pathol. 147, 1228–1237 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, W., Jin, W., Cook, M., Weiner, H.L. & Wahl, S.M. Oral delivery of group A streptococcal cell wall augments circulating TGF-β and suppresses streptococcal cell wall arthritis. J. Immunol. 161, 6297– 6304 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Goldberg, F. Harper and D. Sim for technical assistance; S. Vogel for Mac-2 antibody; A. Nagy for the R1 ES cells; V. Campbell for ganciclovir; K. Flanders for LC I-30; and N. McCartney-Francis for review of the manuscript. G.A. was supported by a Clinician Scientist Fellowship from the Wellcome Trust, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon M. Wahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashcroft, G., Lei, K., Jin, W. et al. Secretory leukocyte protease inhibitor mediates non-redundant functions necessary for normal wound healing. Nat Med 6, 1147–1153 (2000). https://doi.org/10.1038/80489

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80489

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing