Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CTLA4 −1661A/G and 3′UTR long repeat polymorphisms are associated with ulcerative colitis and influence CTLA4 mRNA and protein expression

Abstract

Reduced cytotoxic T-lymphocyte antigen 4 (CTLA4) expression has been proposed as a risk for autoimmunity. CTLA4 polymorphisms have been associated with several autoimmune diseases, including ulcerative colitis (UC). In this study, we performed genotyping for CTLA4 −1661A/G, −1722T/C and 3′ untranslated region (AT)n repeat polymorphisms in 300 Chinese UC patients and in 700 healthy controls, and evaluated the effects of polymorphisms on full-length (flCTLA4) and soluble CTLA4 (sCTLA4) expression in UC patients. The frequency of the −1661G allele was higher in UC patients than in healthy controls (16.5 vs 11.4%, P=0.003, odds ratio (OR)=1.53, 95% confidence interval (95% CI): 1.17–2.01). The prevalence of (AT)n repeats of the CTLA4 gene carrying long alleles (116 bp) was more common in UC patients than in healthy controls (22.0 vs 6.3%, P<0.001, OR=4.21, 95% CI: 2.79–6.33), and was associated with extensive colitis (P=0.008). Among UC patients, long-allele carriers expressed lower levels of flCTLA4 and sCTLA4 mRNA and sCTLA4 protein than did short-allele carriers (P<0.001, P<0.001, P<0.001, respectively). CTLA4 gene −1661A/G and long 3′ untranslated region (AT)n repeat polymorphisms are associated with UC in Central China. This is likely from decreased expressions of sCTLA4 mRNA and sCTLA4 protein. Our study suggests that CTLA4 has an important role in susceptibility for UC in Central China.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Jiang L, Xia B, Li J, Ye M, Yan W, Deng C et al. Retrospective survey of 452 patients with inflammatory bowel disease in Wuhan city, central China. Inflamm Bowel Dis 2006; 12: 212–217.

    Article  Google Scholar 

  2. Fernando MM, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM et al. Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet 2008; 4: e1000024.

    Article  Google Scholar 

  3. Yamazaki K, McGovern D, Ragoussis J, Paolucci M, Butler H, Jewell D et al. Single nucleotide polymorphisms in TNFSF15 confer susceptibility to Crohn's disease. Hum Mol Genet 2005; 14: 3499–3506.

    Article  CAS  Google Scholar 

  4. Fisher SA, Tremelling M, Anderson CA, Gwilliam R, Bumpstead S, Prescott NJ et al. Genetic determinants of ulcerative colitis include the ECM1 locus and five loci implicated in Crohn's disease. Nat Genet 2008; 40: 710–712.

    Article  CAS  Google Scholar 

  5. Franke A, Balschun T, Karlsen TH, Hedderich J, May S, Lu T et al. Replication of signals from recent studies of Crohn's disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 2008; 40: 713–715.

    Article  CAS  Google Scholar 

  6. Franke A, Balschun T, Karlsen TH, Sventoraityte J, Nikolaus S, Mayr G et al. Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 2008; 40: 1319–1323.

    Article  CAS  Google Scholar 

  7. Silverberg MS, Cho JH, Rioux JD, McGovern DP, Wu J, Annese V et al. Ulcerative colitis-risk loci on chromosomes 1p36 and 12q15 found by genome-wide association study. Nat Genet 2009; 41: 216–220.

    Article  CAS  Google Scholar 

  8. Kugathasan S, Baldassano RN, Bradfield JP, Sleiman PM, Imielinski M, Guthery SL et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat Genet 2008; 40: 1211–1215.

    Article  CAS  Google Scholar 

  9. Marzolini C, Paus E, Buclin T, Kim RB . Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004; 75: 13–33.

    Article  CAS  Google Scholar 

  10. Arnott ID, Nimmo ER, Drummond HE, Fennell J, Smith BR, MacKinlay E et al. NOD2/CARD15, TLR4 and CD14 mutations in Scottish and Irish Crohn's disease patients: evidence for genetic heterogeneity within Europe? Genes Immun 2004; 5: 417–425.

    Article  CAS  Google Scholar 

  11. Xavier RJ, Podolsky DK . Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007; 448: 427–434.

    Article  CAS  Google Scholar 

  12. Sansom DM, Walker LS . The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunol Rev 2006; 212: 131–148.

    Article  CAS  Google Scholar 

  13. Engelhardt JJ, Sullivan TJ, Allison JP . CTLA-4 overexpression inhibits T cell responses through a CD28-B7-dependent mechanism. J Immunol 2006; 177: 1052–1061.

    Article  CAS  Google Scholar 

  14. Magistrelli G, Jeannin P, Herbault N, Benoit De Coignac A, Gauchat JF, Bonnefoy JY et al. A soluble form of CTLA-4 generated by alternative splicing is expressed by nonstimulated human T cells. Eur J Immunol 1999; 29: 3596–3602.

    Article  CAS  Google Scholar 

  15. Oaks MK, Hallett KM, Penwell RT, Stauber EC, Warren SJ, Tector AJ . A native soluble form of CTLA-4. Cell Immunol 2000; 201: 144–153.

    Article  CAS  Google Scholar 

  16. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 1995; 270: 985–988.

    Article  CAS  Google Scholar 

  17. Chen Z, Stockton J, Mathis D, Benoist C . Modeling CTLA4-linked autoimmunity with RNA interference in mice. Proc Natl Acad Sci USA 2006; 103: 16400–16405.

    Article  CAS  Google Scholar 

  18. Scalapino KJ, Daikh DI . CTLA-4: a key regulatory point in the control of autoimmune disease. Immunol Rev 2008; 223: 143–155.

    Article  CAS  Google Scholar 

  19. Gough SC, Walker LS, Sansom DM . CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005; 204: 102–115.

    Article  CAS  Google Scholar 

  20. Bouqbis L, Izaabel H, Akhayat O, Pérez-Lezaun A, Calafell F, Bertranpetit J et al. Association of the CTLA4 promoter region (-1661G allele) with type 1 diabetes in the South Moroccan population. Genes Immun 2003; 4: 132–137.

    Article  CAS  Google Scholar 

  21. Chen PL, Fann CS, Chang CC, Wu IL, Chiu WY, Lin CY et al. Family-based association study of cytotoxic T-lymphocyte antigen-4 with susceptibility to Graves’ disease in Han population of Taiwan. Genes Immun 2008; 9: 87–92.

    Article  CAS  Google Scholar 

  22. Greve B, Simonenko R, Illes Z, Peterfalvi A, Hamdi N, Mycko MP et al. Multiple sclerosis and the CTLA4 autoimmunity polymorphism CT60: no association in patients from Germany, Hungary and Poland. Mult Scler 2008; 14: 153–158.

    Article  CAS  Google Scholar 

  23. Brophy K, Ryan AW, Thornton JM, Abuzakouk M, Fitzgerald AP, McLoughlin RM et al. Haplotypes in the CTLA4 region are associated with coeliac disease in the Irish population. Genes Immun 2006; 7: 19–26.

    Article  CAS  Google Scholar 

  24. van Heel DA, Franke L, Hunt KA, Gwilliam R, Zhernakova A, Inouye M et al. A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat Genet 2007; 39: 827–829.

    Article  CAS  Google Scholar 

  25. Festen EA, Goyette P, Scott R, Annese V, Zhernakova A, Brant SR et al. Genetic variants in the region harbouring IL2/IL21 associated with ulcerative colitis. Gut 2009; 58: 799–804.

    Article  CAS  Google Scholar 

  26. Malquori L, Carsetti L, Ruberti G . The 3′UTR of the human CTLA4 mRNA can regulate mRNA stability and translational efficiency. Biochim Biophys Acta 2008; 1779: 60–65.

    Article  CAS  Google Scholar 

  27. Jiang Y, Xia B, Jiang L, Lv M, Guo Q, Chen M et al. Association of CTLA-4 gene microsatellite polymorphism with ulcerative colitis in Chinese patients. Inflamm Bowel Dis 2006; 12: 369–373.

    Article  Google Scholar 

  28. Zhou Y, Huang D, Paris PL, Sauter CS, Prock KA, Hoffman GS . An analysis of CTLA-4 and proinflammatory cytokine genes in Wegener's granulomatosis. Arthritis Rheum 2004; 50: 2645–2650.

    Article  CAS  Google Scholar 

  29. Wang XB, Kakoulidou M, Giscombe R, Qiu Q, Huang D, Pirskanen R et al. Abnormal expression of CTLA-4 by T cells from patients with myasthenia gravis: effect of an AT-rich gene sequence. J Neuroimmunol 2002; 130: 224–232.

    Article  CAS  Google Scholar 

  30. Mansfield ES, Vainer M, Enad S, Barker DL, Harris D, Rappaport E et al. Sensitivity, reproducibility, and accuracy in short tandem repeat genotyping using capillary array electrophoresis. Genome Res 1996; 6: 893–903.

    Article  CAS  Google Scholar 

  31. Reed PW, Davies JL, Copeman JB, Bennett ST, Palmer SM, Pritchard LE et al. Chromosome-specific microsatellite sets for fluorescence-based, semi-automated genome mapping. Nat Genet 1994; 7: 390–395.

    Article  CAS  Google Scholar 

  32. Huang D, Giscombe R, Zhou Y, Lefvert AK . Polymorphisms in CTLA-4 but not tumor necrosis factor-alpha or interleukin 1beta genes are associated with Wegener's granulomatosis. J Rheumatol 2000; 27: 397–401.

    CAS  PubMed  Google Scholar 

  33. Huang D, Liu L, Norén K, Xia SQ, Trifunovic J, Pirskanen R et al. Genetic association of Ctla-4 to myasthenia gravis with thymoma. J Neuroimmunol 1998; 88: 192–198.

    Article  CAS  Google Scholar 

  34. Akamizu T, Sale MM, Rich SS, Hiratani H, Noh JY, Kanamoto N et al. Association of autoimmune thyroid disease with microsatellite markers for the thyrotropin receptor gene and CTLA-4 in Japanese patients. Thyroid 2000; 10: 851–858.

    Article  CAS  Google Scholar 

  35. Slavcheva E, Albanis E, Jiao Q, Tran H, Bodian C, Knight R et al. Cytotoxic T-lymphocyte antigen 4 gene polymorphisms and susceptibility to acute allograft rejection. Transplantation 2001; 72: 935–940.

    Article  CAS  Google Scholar 

  36. Machida H, Tsukamoto K, Wen CY, Narumi Y, Shikuwa S, Isomoto H et al. Association of polymorphic alleles of CTLA4 with inflammatory bowel disease in the Japanese. World J Gastroenterol 2005; 11: 4188–4193.

    Article  CAS  Google Scholar 

  37. Chistiakov DA, Savost’anov KV, Turakulov RI, Efremov IA, Demurov LM . Genetic analysis and functional evaluation of the C/T(-318) and A/G(-1661) polymorphisms of the CTLA-4 gene in patients affected with Graves’ disease. Clin Immunol 2006; 118: 233–242.

    Article  CAS  Google Scholar 

  38. Wang XB, Pirskanen R, Giscombe R, Lefvert AK . Two SNPs in the promoter region of the CTLA-4 gene affect binding of transcription factors and are associated with human myasthenia gravis. J Intern Med 2008; 263: 61–69.

    Article  CAS  Google Scholar 

  39. Anjos SM, Tessier MC, Polychronakos C . Association of the cytotoxic T lymphocyte-associated antigen 4 gene with type 1 diabetes: evidence for independent effects of two polymorphisms on the same haplotype block. J Clin Endocrinol Metab 2004; 89: 6257–6265.

    Article  CAS  Google Scholar 

  40. Ueda H, Howson JM, Esposito L, Heward J, Snook H, Chamberlain G et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423: 506–511.

    Article  CAS  Google Scholar 

  41. Gu M, Kakoulidou M, Giscombe R, Pirskanen R, Lefvert AK, Klareskog L et al. Identification of CTLA-4 isoforms produced by alternative splicing and their association with myasthenia gravis. Clin Immunol 2008; 128: 374–381.

    Article  CAS  Google Scholar 

  42. Kawasaki E, Imagawa A, Makino H, Uga M, Abiru N, Hanafusa T et al. Differences in the contribution of the CTLA4 gene to susceptibility to fulminant and type 1A diabetes in Japanese patients. Diabetes Care 2008; 31: 1608–1610.

    Article  Google Scholar 

  43. Park KS, Baek JA, Do JE, Bang D, Lee ES . CTLA4 gene polymorphisms and soluble CTLA4 protein in Behcet's disease. Tissue Antigens 2009; 74: 222–227.

    Article  CAS  Google Scholar 

  44. Sakthivel P, Shively V, Kakoulidou M, Pearce W, Lefvert AK . The soluble forms of CD28, CD86 and CTLA-4 constitute possible immunological markers in patients with abdominal aortic aneurysm. J Intern Med 2007; 261: 399–407.

    Article  CAS  Google Scholar 

  45. Wong CK, Lit LC, Tam LS, Li EK, Lam CW . Aberrant production of soluble costimulatory molecules CTLA-4, CD28, CD80 and CD86 in patients with systemic lupus erythematosus. Rheumatology 2005; 44: 989–994.

    Article  CAS  Google Scholar 

  46. Nagaraju K, Raben N, Villalba ML, Danning C, Loeffler LA, Lee E et al. Costimulatory markers in muscle of patients with idiopathic inflammatory myopathies and in cultured muscle cells. Clin Immunol 1999; 92: 161–169.

    Article  CAS  Google Scholar 

  47. Pistillo MP, Tazzari PL, Bonifazi F, Bandini G, Kato T, Matsui T et al. Detection of a novel specificity (CTLA-4) in ATG/TMG globulins and sera from ATG-treated leukemic patients. Transplantation 2002; 73: 1295–1302.

    Article  CAS  Google Scholar 

  48. Huang D, Giscombe R, Zhou Y, Pirskanen R, Lefvert AK . Dinucleotide repeat expansion in the CTLA-4 gene leads to T cell hyper-reactivity via the CD28 pathway in myasthenia gravis. J Neuroimmunol 2000; 105: 69–77.

    Article  CAS  Google Scholar 

  49. Takara M, Kouki T, DeGroot LJ . CTLA-4 AT-repeat polymorphism reduces the inhibitory function of CTLA-4 in Graves’ disease. Thyroid 2003; 13: 1083–1089.

    Article  CAS  Google Scholar 

  50. Tapirdamaz O, Pravica V, Metselaar HJ, Hansen B, Moons L, van Meurs JB et al. Polymorphisms in the T cell regulatory gene cytotoxic T lymphocyte antigen 4 influence the rate of acute rejection after liver transplantation. Gut 2006; 55: 863–868.

    Article  CAS  Google Scholar 

  51. Takahashi T, Tagami T, Yamazaki S, Uede T, Shimizu J, Sakaguchi N et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–310.

    Article  CAS  Google Scholar 

  52. Read S, Malmström V, Powrie F . Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000; 192: 295–302.

    Article  CAS  Google Scholar 

  53. Lennard-Jones JE . Classification of inflammatory bowel disease. Scand J Gastroenterol Suppl 1989; 170: 2–6.

    Article  CAS  Google Scholar 

  54. Satsangi J, Silverberg MS, Vermeire S, Colombel JF . The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 2006; 55: 749–753.

    Article  CAS  Google Scholar 

  55. Hudson LL, Rocca K, Song YW, Pandey JP . CTLA-4 gene polymorphisms in systemic lupus erythematosus: a highly significant association with a determinant in the promoter region. Hum Genet 2002; 111: 452–455.

    Article  CAS  Google Scholar 

  56. Schmittgen TD, Livak KJ . Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101–1108.

    Article  CAS  Google Scholar 

  57. Inoue A, Takahashi KA, Arai Y, Tonomura H, Sakao K, Saito M et al. The therapeutic effects of basic fibroblast growth factor contained in gelatin hydrogel microspheres on experimental osteoarthritis in the rabbit knee. Arthritis Rheum 2006; 54: 264–270.

    Article  CAS  Google Scholar 

  58. Thapa L, He CM, Chen HP . Study on the expression of angiotensin II (ANG II) receptor subtype 1 (AT1R) in the placenta of pregnancy-induced hypertension. Placenta 2004; 25: 637–641.

    Article  CAS  Google Scholar 

  59. Loup F, Picard F, André VM, Kehrli P, Yonekawa Y, Wieser HG et al. Altered expression of alpha3-containing GABAA receptors in the neocortex of patients with focal epilepsy. Brain 2006; 129: 3277–3289.

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by grants from the Natural Science Foundation of China (30871149, 30470783), the Funding for Public Welfare of the Ministry of Public Health of China (200802156) and from PhD innovative research projects of the Wuhan University (20083030201000080). Dr Brant received support for this collaboration from the Sherlock Hibbs scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Xia.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Z., Brant, S., Li, C. et al. CTLA4 −1661A/G and 3′UTR long repeat polymorphisms are associated with ulcerative colitis and influence CTLA4 mRNA and protein expression. Genes Immun 11, 573–583 (2010). https://doi.org/10.1038/gene.2010.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2010.16

Keywords

This article is cited by

Search

Quick links