Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs

Abstract

Consistent with the role of microRNAs (miRNAs) in down-regulating gene expression by reducing the translation and/or stability of target messenger RNAs1, the levels of specific miRNAs are important for correct embryonic development and have been linked to several forms of cancer2,3,4. However, the regulatory mechanisms by which primary miRNAs (pri-miRNAs) are processed first to precursor miRNAs (pre-miRNAs) and then to mature miRNAs by the multiprotein Drosha and Dicer complexes5,6,7,8, respectively, remain largely unknown. The KH-type splicing regulatory protein (KSRP, also known as KHSRP) interacts with single-strand AU-rich-element-containing mRNAs and is a key mediator of mRNA decay9,10. Here we show in mammalian cells that KSRP also serves as a component of both Drosha and Dicer complexes and regulates the biogenesis of a subset of miRNAs. KSRP binds with high affinity to the terminal loop of the target miRNA precursors and promotes their maturation. This mechanism is required for specific changes in target mRNA expression that affect specific biological programs, including proliferation, apoptosis and differentiation. These findings reveal an unexpected mechanism that links KSRP to the machinery regulating maturation of a cohort of miRNAs that, in addition to its role in promoting mRNA decay, independently serves to integrate specific regulatory programs of protein expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: KSRP, a component of Dicer complex, interacts with the TL of pre-let-7a-1.
Figure 2: KSRP regulates pre-let-7a-1 processing and controls the expression of certain miRNAs.
Figure 3: KSRP is a component of the microprocessor complex, interacts with pri-let-7a-1 favouring its processing, and is required for interaction of both Drosha and Dicer complexes with let-7a precursors.
Figure 4: KSRP affects let-7-regulated cell proliferation and is involved in Lin28-regulated maturation of let-7g in P19 cells.

Similar content being viewed by others

References

  1. Pillai, R. S., Bhattacharyya, S. N. & Filipowicz, W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 17, 118–126 (2007)

    Article  CAS  Google Scholar 

  2. Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R. & Jacks, T. Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nature Genet. 39, 673–677 (2007)

    Article  CAS  Google Scholar 

  3. Thomson, J. M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006)

    Article  CAS  Google Scholar 

  4. Calin, G. A. & Croce, C. M. MicroRNA signatures in human cancers. Nature Rev. Cancer 6, 857–866 (2006)

    Article  ADS  CAS  Google Scholar 

  5. Kim, V. N., Han, J. & Siomi, M. C. Biogenesis of small RNAs in animals. Nature Rev. Mol. Cell Biol. 10, 126–139 (2009)

    Article  CAS  Google Scholar 

  6. Obernosterer, G., Leuschner, P. J., Alenius, M. & Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 12, 1161–1167 (2006)

    Article  CAS  Google Scholar 

  7. Guil, S. & Caceres, J. F. The multifunctional RNA-binding protein hnRNP A1 is required for processing of miR-18a. Nature Struct. Mol. Biol. 14, 591–596 (2007)

    Article  CAS  Google Scholar 

  8. Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008)

    Article  ADS  CAS  Google Scholar 

  9. Gherzi, R. et al. A KH domain RNA binding protein, KSRP, promotes ARE-directed mRNA turnover by recruiting the degradation machinery. Mol. Cell 14, 571–583 (2004)

    Article  CAS  Google Scholar 

  10. Garcia-Mayoral, M. F. et al. The structure of the C-terminal KH domains of KSRP reveals a noncanonical motif important for mRNA degradation. Structure 15, 485–498 (2007)

    Article  CAS  Google Scholar 

  11. Haase, A. D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961–967 (2005)

    Article  CAS  Google Scholar 

  12. Min, H., Turck, C. W., Nikolic, J. M. & Black, D. L. A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev. 11, 1023–1036 (1997)

    Article  CAS  Google Scholar 

  13. Kroll, T. T., Zhao, W. M., Jiang, C. & Huber, P. W. A homolog of FBP2/KSRP binds to localized mRNAs in Xenopus oocytes. Development 129, 5609–5619 (2002)

    Article  CAS  Google Scholar 

  14. Roush, S. & Slack, F. J. The let-7 family of microRNAs. Trends Cell Biol. 18, 505–516 (2008)

    Article  CAS  Google Scholar 

  15. Garcia-Mayoral, M. F., Diaz-Moreno, I., Hollingworth, D. & Ramos, A. The sequence selectivity of KSRP explains its flexibility in the recognition of the RNA targets. Nucleic Acids Res. 36, 5290–5296 (2008)

    Article  CAS  Google Scholar 

  16. Ruggiero, T. et al. Identification of a set of KSRP target transcripts upregulated by PI3K-AKT signaling. BMC Mol. Biol. 8, 28 (2007)

    Article  Google Scholar 

  17. Johnson, S. M. et al. RAS is regulated by the let-7 microRNA family. Cell 120, 635–647 (2005)

    Article  CAS  Google Scholar 

  18. Sampson, V. B. et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells. Cancer Res. 67, 9762–9770 (2007)

    Article  CAS  Google Scholar 

  19. Lee, Y. S. & Dutta, A. The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev. 21, 1025–1030 (2007)

    Article  CAS  Google Scholar 

  20. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944–13949 (2005)

    Article  ADS  CAS  Google Scholar 

  21. Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet. 38, 228–233 (2006)

    Article  CAS  Google Scholar 

  22. Kim, H. K., Lee, Y. S., Sivaprasad, U., Malhotra, A. & Dutta, A. Muscle-specific microRNA miR-206 promotes muscle differentiation. J. Cell Biol. 174, 677–687 (2006)

    Article  CAS  Google Scholar 

  23. Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008)

    Article  CAS  Google Scholar 

  24. Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nature Cell Biol. 10, 987–993 (2008)

    Article  CAS  Google Scholar 

  25. Piskounova, E. et al. Determinants of microRNA processing inhibition by the developmentally regulated RNA-binding protein Lin28. J. Biol. Chem. 283, 21310–21314 (2008)

    Article  CAS  Google Scholar 

  26. Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008)

    Article  CAS  Google Scholar 

  27. Michlewski, G., Guil, S., Semple, C. A. & Caceres, J. F. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32, 383–393 (2008)

    Article  CAS  Google Scholar 

  28. Chen, C. Y. et al. Nucleolin and YB-1 are required for JNK-mediated interleukin-2 mRNA stabilization during T-cell activation. Genes Dev. 14, 1236–1248 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Schrimpf, S. P., Langen, H., Gomes, A. V. & Wahlestedt, C. A two-dimensional protein map of Caenorhabditis elegans. Electrophoresis 22, 1224–1232 (2001)

    Article  CAS  Google Scholar 

  30. Martin, S. R. et al. Interaction of calmodulin with the phosphofructokinase target sequence. FEBS Lett. 577, 284–288 (2004)

    Article  CAS  Google Scholar 

  31. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995)

    Article  CAS  Google Scholar 

  32. Goddard, T. D. & Kneller, D. G. SPARKY, University of California, San Franciscohttp://www.cgl.ucsf.edu/home/sparky/〉.

  33. Koradi, R., Billeter, M. & Wuthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 51-5, 29–32 (1996)

    Google Scholar 

  34. Kerr, M. K. & Churchill, G. A. Experimental design for gene expression microarrays. Biostatistics 2, 183–201 (2001)

    Article  CAS  Google Scholar 

  35. Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002)

    Article  CAS  Google Scholar 

  36. Dorin, D. et al. The TAR RNA-binding protein, TRBP, stimulates the expression of TAR-containing RNAs in vitro and in vivo independently of its ability to inhibit the dsRNA-dependent kinase PKR. J. Biol. Chem. 278, 4440–4448 (2003)

    Article  CAS  Google Scholar 

  37. Kotaja, N. et al. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components. Proc. Natl Acad. Sci. USA 103, 2647–2652 (2006)

    Article  ADS  CAS  Google Scholar 

  38. Chen, C. Y. et al. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107, 451–464 (2001)

    Article  CAS  Google Scholar 

  39. Briata, P. et al. p38-dependent phosphorylation of the mRNA decay-promoting factor KSRP controls the stability of select myogenic transcripts. Mol. Cell 20, 891–903 (2005)

    Article  CAS  Google Scholar 

  40. Wu, Z. et al. p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol. Cell. Biol. 20, 3951–3964 (2000)

    Article  CAS  Google Scholar 

  41. Gherzi, R. et al. The RNA-binding protein KSRP promotes decay of beta-catenin mRNA and is inactivated by PI3K-AKT signaling. PLoS Biol. 5, e5 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

We thank V. Narry Kim, T. C. Hobman, I. G. Macara, D. Srivastava and J. G. Belasco for reagents, G. Corte for sharing laboratory facilities and critical reading, Y. T. Liu for use of the microarray facility, M. Ponassi and C. Nelson for technical assistance, I. Diaz-Moreno, M. Doyle, S. Martin and D. Hollingworth for discussions and reagents, and A. Pasquinelli and A. De Flora for comments and discussions. Part of the studies has been conducted in the laboratories and facilities of the Centro Biotecnologie Avanzate (CBA, Genova, Italy). M.G.R. is an investigator with the Howard Hughes Medical Institute. M.T. is supported by a post-doctoral fellowship from the Italian Telethon Foundation. This work has been partly supported by grants from Italian ISS (527B/2B/6), AIRC and CIPE 2007 to R.G., ISS (526D/39) to P.B., the EC FP6 Program Sirocco to W.F. and NIH grants DK018477, DK39949 and HL065445 to M.G.R. P.B. is recipient of a Senior Scholar Consultancy grant from AICF. Structural work on KSRP–RNA interaction is supported by grant WT022088MA from the Wellcome Trust. NMR spectra were recorded at the MRC Biomedical NMR Centre, London. The Friedrich Miescher Institute is supported by the Novartis Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andres Ramos, Roberto Gherzi or Michael G. Rosenfeld.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-14 with Legends and Supplementary Tables I and II. (PDF 7469 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trabucchi, M., Briata, P., Garcia-Mayoral, M. et al. The RNA-binding protein KSRP promotes the biogenesis of a subset of microRNAs. Nature 459, 1010–1014 (2009). https://doi.org/10.1038/nature08025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08025

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing