Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metalloproteins and metal sensing

Abstract

Almost half of all enzymes must associate with a particular metal to function. An ambition is to understand why each metal–protein partnership arose and how it is maintained. Metal availability provides part of the explanation, and has changed over geological time and varies between habitats but is held within vital limits in cells. Such homeostasis needs metal sensors, and there is an ongoing search to discover the metal-sensing mechanisms. For metalloproteins to acquire the right metals, metal sensors must correctly distinguish between the inorganic elements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Metals used in catalysis.
Figure 2: Metal sensing in Saccharomyces cerevisiae.
Figure 3: Metal sensors in animals.
Figure 4: Metal-responsive trafficking and processing of metal transporters.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Fraústo da Silva, J. J. R. & Williams, R. J. P. The Biological Chemistry of the Elements (Oxford Univ. Press, 2001).

    Google Scholar 

  2. Saito, M. A., Sigman, D. M. & Morel, F. M. M. The bioinorganic chemistry of the ancient ocean: the co-evolution of cyanobacterial metal requirements and biogeochemical cycles at the Archean-Proterozoic boundary? Inorg. Chim. Acta 356, 308–318 (2003).

    Article  CAS  Google Scholar 

  3. Dupont, C. L., Yang, S., Palenik, B. & Bourne, P. E. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc. Natl Acad. Sci. USA 103, 17822–17827 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Irving, H. & Williams, R. J. P. Order of stability of metal complexes. Nature 162, 746–747 (1948).

    Article  ADS  CAS  Google Scholar 

  5. Tottey, S. et al. Protein-folding location can regulate manganese-binding versus copper- or zinc-binding. Nature 455, 1138–1142 (2008). This paper shows that two proteins with similar folds and metal preferences acquire metals from opposite ends of the Irving-Williams series on the basis of where in the cell they fold, illustrating the contribution of cell biology to the selection of metals by metalloproteins.

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C. & O'Halloran, T. V. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284, 805–808 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Outten, C. E. & O'Halloran, T. V. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292, 2488–2492 (2001). In this paper, the tight zinc affinities of two zinc sensors, ZntR and Zur, are estimated and used to infer a low concentration of available zinc in the bacterial cytoplasm.

    Article  CAS  PubMed  Google Scholar 

  8. Changela, A. et al. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301, 1383–1387 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Waldron, K. J. & Robinson, N. J. How do bacterial cells ensure that metalloproteins get the correct metal? Nature Rev. Microbiol. 7, 25–35 (2009). In this paper, bacterial models for metal discrimination by metal sensors and other proteins of metal homeostasis are set out in a prelude to the current Review.

    Article  CAS  Google Scholar 

  10. Laity, J. H. & Andrews, G. K. Understanding the mechanisms of zinc-sensing by metal response element binding transcription factor-1 (MTF-1). Arch. Biochem. Biophys. 463, 201–210 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Walden, W. E. et al. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science 314, 1903–1908 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Ferrer, M., Golyshina, O.V., Beloqui, A., Golyshin, P.N. & Timmis, K.N. The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature 445, 91–94 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Andreini, C., Bertini, I., Cavallaro, G., Holliday, G. L. & Thornton, J. M. Metal ions in biological catalysis: from enzyme databases to general principles. J. Biol. Inorg. Chem. 13, 1205–1218 (2008). In this paper, the use of different metals in enzymes is evaluated in a systematic way.

    Article  CAS  PubMed  Google Scholar 

  14. Lieberman, R. L. & Rosenzweig, A. C. Crystal structure of a membrane-bound metalloenzyme that catalyses the biological oxidation of methane. Nature 434, 177–182 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Robinson, N. J., Procter, C. M., Connolly, E. L. & Guerinot, M. L. A ferric-chelate reductase for iron uptake from soils. Nature 397, 694–697 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Palmer, C. M. & Guerinot, M. L. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chem. Biol. 5, 333–340 (2009).

    Article  CAS  Google Scholar 

  17. Peers, G. & Price, N. M. Copper-containing plastocyanin used for electron transport by an oceanic diatom. Nature 441, 341–344 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Strzepek, R. F. & Harrison, P. J. Photosynthetic architecture differs in coastal and oceanic diatoms. Nature 431, 689–692 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Konhauser, K. O. et al. Oceanic nickel depletion and a methanogen famine before the Great Oxidation Event. Nature 458, 750–754 (2009). This paper shows how a very early change in the availability of a metal had profound consequences for metal-protein partnerships, changing the course of evolution.

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Saito, M. A. Less nickel for more oxygen. Nature 458, 714–715 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Park, H., Song, B. & Morel, F. M. M. Diversity of the cadmium-containing carbonic anhydrase in marine diatoms and natural waters. Environ. Microbiol. 9, 403–413 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Lane, T. W. et al. Biochemistry: a cadmium enzyme from a marine diatom. Nature 435, 42 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Xu, Y., Feng, L., Jeffrey, P. D., Shi, Y. & Morel, F. M. M. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature 452, 56–61 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Culotta, V. C., Yang, M. & O'Halloran, T. V. Activation of superoxide dismutases: putting the metal to the pedal. Biochim. Biophys. Acta 1763, 747–758 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schofield, C. J. & Ratcliffe, P. J. Oxygen sensing by HIF hydroxylases. Nature Rev. Mol. Cell Biol. 5, 343–354 (2004).

    Article  CAS  Google Scholar 

  27. Ranquet, C., Ollagnier-de-Choudens, S., Loiseau, L., Barras, F. & Fontecave, M. Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins. J. Biol. Chem. 282, 30442–30451 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Labbé, R. F. & Dewanji, A. Iron assessment tests: transferring receptor vis-à-vis zinc protoporphyrin. Clin. Biochem. 37, 165–174 (2004).

    Article  PubMed  CAS  Google Scholar 

  29. Portnoy, M. E., Schmidt, P. J., Rogers, R. S. & Culotta, V. C. Metal transporters that contribute to metallochaperones in Saccharomyces cerevisiae . Mol. Genet. Genomics 265, 873–882 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Xiao, Z. & Wedd, A. G. A C-terminal domain of the membrane copper pump Ctr1 exchanges copper(I) with the copper chaperone Atx1. Chem. Commun. 588–592 (2002).

  31. De Feo, C. J., Aller, S. G., Siluvai, G. S., Blackburn, N. J. & Unger, V. M. Three-dimensional structure of the human copper transporter hCTR1. Proc. Natl Acad. Sci. USA 106, 4237–4242 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pufahl, R. A. et al. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853–856 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Furukawa, Y., Torres, A. S. & O'Halloran, T. V. Oxygen-induced maturation of SOD1: a key role for disulfide formation by the copper chaperone CCS. EMBO J. 23, 2872–2881 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Halloran, T. V. Transition metals in control of gene expression. Science 261, 715–725 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Giedroc, D. P. & Arunkumar, A. I. Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Trans. 3107–3120 (2007). In this paper, metal sensors of bacteria are reviewed and the important contributions of coordination chemistry and allostery are explained.

  36. Cavet, J. S. et al. A nickel-cobalt-sensing ArsR-SmtB family repressor. Contributions of cytosol and effector binding sites to metal selectivity. J. Biol. Chem. 277, 38441–38448 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Guedon, E. & Helmann, J. D. Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol. Microbiol. 48, 495–506 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Golynskiy, M. V., Gunderson, W. A., Hendrich, M. P. & Cohen, S. M. Metal-binding studies and EPR spectroscopy of the manganese transport regulator MntR. Biochemistry 45, 15359–15372 (2006).

    Article  CAS  PubMed  Google Scholar 

  39. Phillips, C. M. et al. Structural basis of the metal specificity for nickel regulatory protein NikR. Biochemistry 47, 1938–1946 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Labbé, S., Peña, M. M., Fernandes, A. R. & Thiele, D. J. A copper-sensing transcription factor regulates iron uptake genes in Schizosaccharomyces pombe . J. Biol. Chem. 274, 36252–36260 (1999).

    Article  PubMed  Google Scholar 

  41. Pelletier, B., Beaudoin, J., Mukai, Y. & Labbé, S. Fep1, an iron sensor regulating iron transporter gene expression in Schizosaccharomyces pombe . J. Biol. Chem. 277, 22950–22958 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Rutherford, J. C. & Bird, A. J. Metal-responsive transcription factors that regulate iron, zinc and copper homeostasis in eukaryotic cells. Eukaryot. Cell 3, 1–13 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yonkovich, J., McKenndry, R., Shi, X. & Zhu, Z. Copper ion-sensing transcription factor Mac1p post-translationally controls the degradation of its target gene product Ctr1p. J. Biol. Chem. 277, 23981–23984 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Li, L., Chen, O. S., McVey Ward, D. & Kaplan, J. CCC1 is a transporter that mediates vacuolar iron storage in yeast. J. Biol. Chem. 276, 29515–29519 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. MacDiarmid, C. W., Gaither, L. A. & Eide, D. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae . EMBO J. 19, 2845–2855 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Puig, S., Askeland, E. & Thiele, D. J. Coordinated remodelling of cellular metabolism during iron deficiency through targeted mRNA degradation. Cell 120, 99–110 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Puig, S., Vergara, S. V. & Thiele, D. J. Cooperation of two mRNA-binding proteins drives metabolic adaptation to iron deficiency. Cell Metab. 7, 555–564 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Haurie, V., Boucherie, H. & Sagliocco, F. The Snf1 protein kinase controls the induction of genes of the iron uptake pathway at the diauxic shift in Saccharomyces cerevisiae . J. Biol. Chem. 278, 45391–45396 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Fürst, P., Hu, S., Hackett, R. & Hamer, D. Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55, 705–717 (1988). In this paper, DNA binding by an activator of metallothionein gene transcription is shown to depend on copper binding to the activator, and a eukaryotic metal sensor is thus discovered.

    Article  PubMed  Google Scholar 

  50. Jungmann, J. et al. MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilization and stress resistance in yeast. EMBO J. 12, 5051–5056 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Brown, K. R. et al. Structures of the cuprous-thiolate clusters of the Mac1 and Ace1 transcriptional activators. Biochemistry 41, 6469–6476 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Peña, M. M., Koch, K. A. & Thiele, D. J. Dynamic regulation of copper uptake and detoxification genes in Saccharomyces cerevisiae . Mol. Cell. Biol. 18, 2514–2523 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bird, A. J. et al. Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function. EMBO J. 22, 5137–5146 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Qiao, W., Mooney, M., Bird, A. J., Winge, D. R. & Eide, D. J. Zinc binding to a regulatory zinc-sensing domain monitored in vivo by using FRET. Proc. Natl Acad. Sci. USA 103, 8674–8679 (2006). In this paper, by exploiting constructs in which zinc occupancy of two of Zap1's zinc-fingers is coupled to energy transfer between fluorescent reporters, Zap1 is inferred to detect zinc directly through metal binding in vivo.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, Z. et al. Solution structure of a Zap1 zinc-responsive domain provides insights into metalloregulatory transcriptional repression in Saccharomyces cerevisiae . J. Mol. Biol. 357, 1167–1183 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Yamaguchi-Iwai, Y., Dancis, A. & Klausner, R. D. AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae . EMBO J. 14, 1231–1239 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rutherford, J. C., Jaron, S., Ray, E., Brown, P. O. & Winge, D. R. A second iron-regulatory system in yeast independent of Aft1p. Proc. Natl Acad. Sci. USA 98, 14322–14327 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ueta, R., Fujiwara, N., Iwai, K. & Yamaguchi-Iwai, Y. Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae . Mol. Biol. Cell 18, 2980–2990 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumánovics, A. et al. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J. Biol. Chem. 283, 10276–10286 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ojeda, L. et al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae . J. Biol. Chem. 281, 17661–17669 (2006).

    Article  CAS  PubMed  Google Scholar 

  61. Yamaguchi-Iwai, Y., Stearman, R., Dancis, A. & Klausner, R. D. Iron-regulated DNA-binding by the AFT1 protein controls the iron regulon in yeast. EMBO J. 15, 3377–3384 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Picciocchi, A., Saquez, C., Boussac, A., Cassier-Chauvat, C. & Chauvat, F. CGFS-type monothiol glutaredoxins from the cyanobacterium Synechocystis PCC6803 and other evolutionary distant model organisms possess a glutathione-ligated [2Fe-2S] cluster. Biochemistry 46, 15018–15026 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Rutherford, J. C. et al. Activation of the iron regulon by the yeast Aft1/Aft2 transcription factors depends on mitochondrial but not cytosolic iron-sulfur protein biogenesis. J. Biol. Chem. 280, 10135–10140 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Heredia, J., Crooks, M. & Zhu, Z. Phosphorylation and Cu+ coordination-dependent DNA binding of the transcription factor Mac1p in the regulation of copper transport. J. Biol. Chem. 276, 8793–8797 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Wood, L. K. & Thiele, D. J. Transcriptional activation in yeast in response to copper deficiency involves copper-zinc superoxide dismutase. J. Biol. Chem. 284, 404–413 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Burkhead, J.L., Gogolin Reynolds, K.A., Abdel-Ghany, S.E., Cohu, C.M. & Pilon, M. Copper homeostasis. New Phytol. 182, 799–816 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Song, I. S. et al. Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol. Pharmacol. 74, 705–713 (2008).

    Article  CAS  PubMed  Google Scholar 

  68. Zheng, D., Feeney, G. P., Kille, P. & Hogstrand, C. Regulation of ZIP and ZnT zinc transporters in zebrafish gill: zinc repression of ZIP10 transcription by an intronic MRE cluster. Physiol. Genomics 34, 205–214 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wimmer, U., Wang, Y., Georgiev, O. & Schaffner, W. Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione. Nucleic Acids Res. 33, 5715–5727 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li, Y., Kimura, T., Huyck, R. W., Laity, J. H. & Andrews, G. K. Zinc-induced formation of a coactivator complex containing the zinc-sensing transcription factor MTF-1, p300/CBP, and Sp1. Mol. Cell. Biol. 28, 4275–4284 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Selvaraj, A. et al. Metal-responsive transcription factor (MTF-1) handles both extremes, copper load and copper starvation, by activating different genes. Genes Dev. 19, 891–896 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Smirnova, I. V., Bittel, D. C., Ravindfra, R., Jiang, H. & Andrews, G. K. Zinc and cadmium promote rapid nuclear translocation of metal response element-binding transcription factor-1. J. Biol. Chem. 275, 9377–9384 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Zhang, B. et al. Activity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein. Mol. Cell. Biol. 23, 8471–8485 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, X. et al. Copper sensing function of Drosophila metal-responsive transcription factor-1 is mediated by a tetranuclear Cu(I) cluster. Nucleic Acids Res. 36, 3128–3138 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rouault, T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nature Chem. Biol. 2, 406–414 (2006).

    Article  CAS  Google Scholar 

  76. Phillips, J. D., Guo, B., Yu, Y. & Leibold, E. A. Iron regulates the intracellular degradation of iron regulatory protein 2 by the proteasome. J. Biol. Chem. 270, 21645–21651 (1995).

    Article  PubMed  Google Scholar 

  77. Kim, B.-E., Nevitt, T. & Thiele, D. J. Mechanisms of copper acquisition, distribution and regulation. Nature Chem. Biol. 4, 176–185 (2008).

    Article  CAS  Google Scholar 

  78. Guo, Y., Smith, K., Lee, J., Thiele, D. J. & Petris, M. J. Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. J. Biol. Chem. 279, 17428–17433 (2004).

    Article  CAS  PubMed  Google Scholar 

  79. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  80. Mao, X., Kim, B.-E., Wang, F., Eide, D. J. & Petris, M. J. A histidine-rich cluster mediates the ubiquitination and degradation of the human zinc transporter, hZIP4, and protects against zinc cytotoxicity. J. Biol. Chem. 282, 6992–7000 (2007).

    Article  CAS  PubMed  Google Scholar 

  81. Kambe, T. & Andrews, G. K. Novel proteolytic processing of the ectodomain of the zinc transporter ZIP4 (SLC39A4) during zinc deficiency is inhibited by acrodermatitis enteropathica mutations. Mol. Cell. Biol. 29, 129–139 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Kim, B.-E. et al. Zn2+-stimulated endocytosis of the mZIP4 zinc transporter regulates its location at the plasma membrane. J. Biol. Chem. 279, 4523–4530 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Petris, M. J. et al. Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J. 15, 6084–6095 (1996). In this paper, metal-dependent trafficking of a metal-transporter is discovered.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Braitermann, L. et al. Apical targeting and Golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G433–G444 (2009).

    Article  CAS  Google Scholar 

  85. La Fontaine, S. & Mercer, J. F. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch. Biochem. Biophys. 463, 149–167 (2007).

    Article  CAS  PubMed  Google Scholar 

  86. McKie, A. T. et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Andrews, N. C. Forging a field: the golden age of iron biology. Blood 112, 219–230 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ma, J. K. et al. The axial ligand and extent of protein folding determine whether Zn or Cu binds to amicyanin. J. Inorg. Biochem. 102, 342–346 (2008).

    Article  CAS  PubMed  Google Scholar 

  89. Turner, R. B. et al. Solution structure of a zinc domain conserved in yeast copper-regulated transcription factors. Nature Struct. Biol. 5, 551–555 (1998).

    Article  CAS  PubMed  Google Scholar 

  90. Giedroc, D. P., Chen, X., Pennella, M. A. & LiWang, A. C. Conformational heterogeneity in the C-terminal zinc fingers of human MTF-1: an NMR and zinc-binding study. J. Biol. Chem. 276, 42322–42332 (2001).

    Article  CAS  PubMed  Google Scholar 

  91. Jackson, K. A. et al. Splice variants of the human zinc transporter ZnT5 (SLC30A5) are differentially localized and regulated by zinc through transcription and mRNA stability. J. Biol. Chem. 282, 10423–10431 (2007).

    Article  CAS  PubMed  Google Scholar 

  92. Mukhopadhyay, C. K., Mazumder, B. & Fox, P. L. Role of hypoxia-inducible factor-1 in transcriptional activation of ceruloplasmin by iron deficiency. J. Biol. Chem. 275, 21048–21054 (2000).

    Article  CAS  PubMed  Google Scholar 

  93. Ozer, A. & Bruick, R. K. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nature Chem. Biol. 3, 144–152 (2007).

    Article  CAS  Google Scholar 

  94. Hershfinkel, M., Moran, A., Grossman, N. & Sekler, I. A zinc-sensing receptor triggers the release of intracellular Ca2+ and regulates iron transport. Proc. Natl Acad. Sci. USA 98, 11749–11754 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  96. Barnham, K. J. & Bush, A. I. Metals in Alzheimer's and Parkinson's disease. Curr. Opin. Chem. Biol. 12, 222–228 (2008).

    Article  CAS  PubMed  Google Scholar 

  97. Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Rulíšek, L. & Vondrášek, J. Coordination geometries of selected transition metal ions (Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Hg2+) in metalloproteins. J. Inorg. Biochem. 71, 115–127 (1998).

    Article  PubMed  Google Scholar 

  99. Johnson, D. A. & Nelson, P. G. Factors determining the ligand field stabilization energies of the hexaaqua 2+ complexes of the first transition series and the Irving-Williams order. Inorg. Chem. 34, 5666–5671 (1995).

    Article  CAS  Google Scholar 

  100. Dudev, T. & Lim, C. Metal binding affinity and selectivity in metalloproteins: insights from computational studies. Annu. Rev. Biophys. 37, 97–116 (2008). From computational studies, it is inferred that in the absence of metallochaperones the specificity of a metal for a set of ligands in a protein depends mainly on the metal's abundance in the locality.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This article describes a selection of the insights of many friends and colleagues. The authors are supported by grants BB/E001688/1 and BB/F019637/1 from the Biotechnology and Biological Sciences Research Council.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to N.J.R. (n.j.robinson@ncl.ac.uk).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldron, K., Rutherford, J., Ford, D. et al. Metalloproteins and metal sensing. Nature 460, 823–830 (2009). https://doi.org/10.1038/nature08300

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08300

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing