Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phosphorylation of NLRC4 is critical for inflammasome activation

Abstract

NLRC4 is a cytosolic member of the NOD-like receptor family that is expressed in innate immune cells. It senses indirectly bacterial flagellin and type III secretion systems, and responds by assembling an inflammasome complex that promotes caspase-1 activation and pyroptosis1,2,3,4,5,6. Here we use knock-in mice expressing NLRC4 with a carboxy-terminal 3×Flag tag to identify phosphorylation of NLRC4 on a single, evolutionarily conserved residue, Ser 533, following infection of macrophages with Salmonella enterica serovar Typhimurium (also known as Salmonella typhimurium). Western blotting with a NLRC4 phospho-Ser 533 antibody confirmed that this post-translational modification occurs only in the presence of stimuli known to engage NLRC4 and not the related protein NLRP3 or AIM2. Nlrc4−/− macrophages reconstituted with NLRC4 mutant S533A, unlike those reconstituted with wild-type NLRC4, did not activate caspase-1 and pyroptosis in response to S. typhimurium, indicating that S533 phosphorylation is critical for NLRC4 inflammasome function. Conversely, phosphomimetic NLRC4 S533D caused rapid macrophage pyroptosis without infection. Biochemical purification of the NLRC4-phosphorylating activity and a screen of kinase inhibitors identified PRKCD (PKCδ) as a candidate NLRC4 kinase. Recombinant PKCδ phosphorylated NLRC4 S533 in vitro, immunodepletion of PKCδ from macrophage lysates blocked NLRC4 S533 phosphorylation in vitro, and Prkcd−/− macrophages exhibited greatly attenuated caspase-1 activation and IL-1β secretion specifically in response to S. typhimurium. Phosphorylation-defective NLRC4 S533A failed to recruit procaspase-1 and did not assemble inflammasome specks7 during S. typhimurium infection, so phosphorylation of NLRC4 S533 probably drives conformational changes necessary for NLRC4 inflammasome activity and host innate immunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NLRC4 Ser 533 is phosphorylated in response to S. typhimurium.
Figure 2: NLRC4 Ser 533 phosphorylation is essential for NLRC4-dependent caspase-1 processing.
Figure 3: PKCδ phosphorylates NLRC4 Ser 533 after S. typhimurium infection.
Figure 4: NLRC4 S533 phosphorylation is required for inflammasome assembly after S. typhimurium infection.

Similar content being viewed by others

References

  1. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004)

    Article  CAS  ADS  Google Scholar 

  2. Miao, E. A. et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1β via Ipaf. Nature Immunol. 7, 569–575 (2006)

    Article  CAS  Google Scholar 

  3. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in Salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006)

    Article  CAS  Google Scholar 

  4. Miao, E. A. et al. Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc. Natl Acad. Sci. USA 107, 3076–3080 (2010)

    Article  CAS  ADS  Google Scholar 

  5. Kofoed, E. M. & Vance, R. E. Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477, 592–595 (2011)

    Article  CAS  ADS  Google Scholar 

  6. Zhao, Y. et al. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477, 596–600 (2011)

    Article  CAS  ADS  Google Scholar 

  7. Broz, P. et al. Redundant roles for inflammasome receptors NLRP3 and NLRC4 in host defense against Salmonella. J. Exp. Med. 207, 1745–1755 (2010)

    Article  CAS  Google Scholar 

  8. Amer, A. et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J. Biol. Chem. 281, 35217–35223 (2006)

    Article  CAS  Google Scholar 

  9. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006)

    Article  CAS  ADS  Google Scholar 

  10. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature Immunol. 11, 395–402 (2010)

    Article  CAS  Google Scholar 

  11. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunol. 11, 385–393 (2010)

    Article  CAS  Google Scholar 

  12. Jones, J. W. et al. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl Acad. Sci. USA 107, 9771–9776 (2010)

    Article  CAS  ADS  Google Scholar 

  13. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl Acad. Sci. USA 96, 2396–2401 (1999)

    Article  CAS  ADS  Google Scholar 

  14. Wang, G. G. et al. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nature Methods 3, 287–293 (2006)

    Article  CAS  Google Scholar 

  15. Poyet, J. L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309–28313 (2001)

    Article  CAS  Google Scholar 

  16. Wolf, M. & Baggiolini, M. The protein kinase inhibitor staurosporine, like phorbol esters, induces the association of protein kinase C with membranes. Biochem. Biophys. Res. Commun. 154, 1273–1279 (1988)

    Article  CAS  Google Scholar 

  17. Mizuno, K., Saido, T. C., Ohno, S., Tamaoki, T. & Suzuki, K. Staurosporine-related compounds, K252a and UCN-01, inhibit both cPKC and nPKC. FEBS Lett. 330, 114–116 (1993)

    Article  CAS  Google Scholar 

  18. Steinberg, S. F. Structural basis of protein kinase C isoform function. Physiol. Rev. 88, 1341–1378 (2008)

    Article  CAS  Google Scholar 

  19. Soltoff, S. P. Rottlerin: an inappropriate and ineffective inhibitor of PKCδ. Trends Pharmacol. Sci. 28, 453–458 (2007)

    Article  CAS  Google Scholar 

  20. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004)

    Article  CAS  Google Scholar 

  21. Vendel, A. C. et al. B and T lymphocyte attenuator regulates B cell receptor signaling by targeting Syk and BLNK. J. Immunol. 182, 1509–1517 (2009)

    Article  CAS  Google Scholar 

  22. Castellana, N. E. et al. Resurrection of a clinical antibody: template proteogenomic de novo proteomic sequencing and reverse engineering of an anti-lymphotoxin-α antibody. Proteomics 11, 395–405 (2011)

    Article  CAS  Google Scholar 

  23. Wang, G. G. et al. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nature Methods 3, 287–293 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Broz, A. Paler Martinez, M. Roose-Girma, X. Rairdan, C. Kung, V. Asghari and S. Mukund for technical support, and K. O’Rourke for editorial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Y.Q., S.M., A.I.-T., D.A., L.L.G., J.E.C., L.K. and S.L. designed and conducted experiments; K.N. generated the Nlrc4 F/F mice; J.L. performed bioinformatics analyses; M.L., N.K. and D.M. discussed the study; Y.Q., K.N. and V.M.D. wrote the manuscript.

Corresponding author

Correspondence to Vishva M. Dixit.

Ethics declarations

Competing interests

Y.Q., S.M., A.I.-T., K.N., L.L.G., J.E.C., S.L., N.K., J.L., L.K., D.A. and V.M.D. are employees of Genentech, Inc.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-6 and Supplementary Tables 1-2. (PDF 2399 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, Y., Misaghi, S., Izrael-Tomasevic, A. et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490, 539–542 (2012). https://doi.org/10.1038/nature11429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11429

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing