Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A T-bet gradient controls the fate and function of CCR6RORγt+ innate lymphoid cells

Subjects

Abstract

At mucosal surfaces, the immune system should not initiate inflammatory immune responses to the plethora of antigens constantly present in the environment, but should remain poised to unleash a potent assault on intestinal pathogens. The transcriptional programs and regulatory factors required for immune cells to switch from homeostatic (often tissue-protective) function1 to potent antimicrobial immunity are poorly defined. Mucosal retinoic-acid-receptor-related orphan receptor-γt-positive (RORγt+) innate lymphoid cells (ILCs) are emerging as an important innate lymphocyte population required for immunity to intestinal infections2. Various subsets of RORγt+ ILCs have been described3,4,5,6,7,8 but the transcriptional programs controlling their specification and fate remain largely unknown. Here we provide evidence that the transcription factor T-bet determines the fate of a distinct lineage of CCR6RORγt+ ILCs. Postnatally emerging CCR6RORγt+ ILCs upregulated T-bet and this was controlled by cues from the commensal microbiota and interleukin-23 (IL-23). In contrast, CCR6+RORγt+ ILCs, which arise earlier during ontogeny, did not express T-bet. T-bet instructed the expression of T-bet target genes such as interferon-γ (IFN-γ) and of the natural cytotoxicity receptor NKp46. Mice genetically lacking T-bet showed normal development of CCR6RORγt+ ILCs, but they could not differentiate into NKp46-expressing RORγt+ ILCs (that is, IL-22-producing natural killer (NK-22) cells)3,9 and failed to produce IFN-γ. The production of IFN-γ by T-bet-expressing CCR6RORγt+ ILCs was essential for the release of mucus-forming glycoproteins required to protect the epithelial barrier during Salmonella enterica infection10,11. Salmonella infection also causes severe enterocolitis that is at least partly driven by IFN-γ12. Mice deficient for T-bet or depleted of ILCs developed only mild enterocolitis. Thus, graded expression of T-bet in CCR6RORγt+ ILCs facilitates the differentiation of IFN-γ-producing CCR6RORγt+ ILCs required to protect the epithelial barrier against Salmonella infections. Co-expression of T-bet and RORγt, which is also found in subsets of IL-17-producing T-helper (TH17) cells13, may be an evolutionarily conserved transcriptional program that originally developed as part of the innate defence against infections but that also confers an increased risk of immune-mediated pathology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CCR6RORγt+ ILCs express T-bet.
Figure 2: CCR6T-bet+RORγt+ ILCs and CCR6+T-betRORγt+ ILCs are separate ILC lineages.
Figure 3: Microbiota and IL-23 control T-bet expression by CCR6RORγt+ ILCs.
Figure 4: IFN-γ-producing NKp46+CCR6T-bet+RORγt+ ILCs control mucus release and inflammation following Salmonella infection.

Similar content being viewed by others

References

  1. Hooper, L. V. & Macpherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Rev. Immunol. 10, 159–169 (2010)

    CAS  Google Scholar 

  2. Spits, H. & Cupedo, T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu. Rev. Immunol. 30, 647–675 (2012)

    CAS  PubMed  Google Scholar 

  3. Sanos, S. L. et al. RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nature Immunol. 10, 83–91 (2009)

    CAS  ADS  Google Scholar 

  4. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008)

    CAS  PubMed  Google Scholar 

  5. Luci, C. et al. Influence of the transcription factor RORγt on the development of NKp46+ cell populations in gut and skin. Nature Immunol. 10, 75–82 (2009)

    CAS  Google Scholar 

  6. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010)

    CAS  PubMed  ADS  Google Scholar 

  7. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011)

    CAS  PubMed  ADS  Google Scholar 

  9. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009)

    CAS  PubMed  ADS  Google Scholar 

  10. Songhet, P. et al. Stromal IFN-γR-signaling modulates goblet cell function during Salmonella Typhimurium infection. PLoS ONE 6, e22459 (2011)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Rhee, S. J., Walker, W. A. & Cherayil, B. J. Developmentally regulated intestinal expression of IFN-γ and its target genes and the age-specific response to enteric Salmonella infection. J. Immunol. 175, 1127–1136 (2005)

    CAS  PubMed  Google Scholar 

  12. Barthel, M. et al. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host. Infect. Immun. 71, 2839–2858 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ghoreschi, K. et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature 467, 967–971 (2010)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nature Immunol. 10, 66–74 (2009)

    CAS  Google Scholar 

  15. Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nature Immunol. 13, 144–151 (2011)

    Google Scholar 

  16. Sanos, S. L., Vonarbourg, C., Mortha, A. & Diefenbach, A. Control of epithelial cell function by interleukin-22-producing RORγt+ innate lymphoid cells. Immunology 132, 453–465 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Oestreich, K. J. & Weinmann, A. S. Transcriptional mechanisms that regulate T helper 1 cell differentiation. Curr. Opin. Immunol. 24, 191–195 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lazarevic, V. & Glimcher, L. H. T-bet in disease. Nature Immunol. 12, 597–606 (2011)

    CAS  Google Scholar 

  20. Gordon, S. M. et al. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36, 55–67 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Szabo, S. J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002)

    CAS  PubMed  ADS  Google Scholar 

  22. Cella, M., Otero, K. & Colonna, M. Expansion of human NK-22 cells with IL-7, IL-2, and IL-1beta reveals intrinsic functional plasticity. Proc. Natl Acad. Sci. USA 107, 10961–10966 (2010)

    CAS  ADS  Google Scholar 

  23. Crellin, N. K. et al. Regulation of cytokine secretion in human CD127+ LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity 33, 752–764 (2010)

    CAS  Google Scholar 

  24. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nature Med. 14, 282–289 (2008)

    CAS  PubMed  Google Scholar 

  25. Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134 (2011)

    CAS  PubMed  Google Scholar 

  26. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  27. Garrett, W. S. et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131, 33–45 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Awoniyi, M., Miller, S. I., Wilson, C. B., Hajjar, A. M. & Smith, K. D. Homeostatic regulation of Salmonella-induced mucosal inflammation and injury by IL-23. PLoS ONE 7, e37311 (2012)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Klose, C. S., Hoyler, T., Kiss, E. A., Tanriver, Y. & Diefenbach, A. Transcriptional control of innate lymphocyte fate decisions. Curr. Opin. Immunol. 24, 290–296 (2012)

    CAS  PubMed  Google Scholar 

  30. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nature Immunol. 12, 255–263 (2011)

    CAS  Google Scholar 

  31. Bernink, J. H. et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nature Immunol. http://dx.doi.org/10.1038/ni.2534 (in the press).

  32. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nature Immunol. 5, 64–73 (2004)

    CAS  Google Scholar 

  33. Eberl, G. & Littman, D. R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004)

    CAS  PubMed  ADS  Google Scholar 

  34. Srinivas, S. et al. Cre reporter strains produced by targeted insertion of EYFP and ECFP into the ROSA26 locus. BMC Dev. Biol. 1, 4 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmidt, J. V., Su, G. H., Reddy, J. K., Simon, M. C. & Bradfield, C. A. Characterization of a murine Ahr null allele: involvement of the Ah receptor in hepatic growth and development. Proc. Natl Acad. Sci. USA 93, 6731–6736 (1996)

    CAS  PubMed  ADS  Google Scholar 

  36. Wu, C. et al. IL-12 receptor β2 (IL-12R β2)-deficient mice are defective in IL-12-mediated signaling despite the presence of high affinity IL-12 binding sites. J. Immunol. 165, 6221–6228 (2000)

    CAS  PubMed  Google Scholar 

  37. Ghilardi, N. et al. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J. Immunol. 172, 2827–2833 (2004)

    CAS  PubMed  Google Scholar 

  38. Kurschus, F. C. et al. Genetic proof for the transient nature of the Th17 phenotype. Eur. J. Immunol. 40, 3336–3346 (2010)

    CAS  PubMed  Google Scholar 

  39. Croxford, A. L., Kurschus, F. C. & Waisman, A. Cutting edge: an IL-17F-CreEYFP reporter mouse allows fate mapping of Th17 cells. J. Immunol. 182, 1237–1241 (2009)

    CAS  PubMed  Google Scholar 

  40. Hou, B., Reizis, B. & DeFranco, A. L. Toll-like receptors activate innate and adaptive immunity by using dendritic cell-intrinsic and -extrinsic mechanisms. Immunity 29, 272–282 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kaplan, M. H., Sun, Y. L., Hoey, T. & Grusby, M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177 (1996)

    CAS  PubMed  ADS  Google Scholar 

  42. Conrad, M. L. et al. Maternal TLR signaling is required for prenatal asthma protection by the nonpathogenic microbe Acinetobacter lwoffii F78. J. Exp. Med. 206, 2869–2877 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Salzman, N. H. et al. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148, 3651–3660 (2002)

    CAS  PubMed  Google Scholar 

  45. Salzman, N. H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nature Immunol. 11, 76–82 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Häcker for support, the members of the Diefenbach laboratory for valuable discussions, and C. A. Connor for comments on the manuscript. We are grateful to M. Follo, K. Geiger and J. Bodinek-Wersing for cell sorting. The work was supported by the Deutsche Forschungsgemeinschaft (SFB620/A14 to A.D. and TA436/2-1 to Y.T.), the German Federal Ministry of Education and Research (BMBF 01 EO 0803 to A.D. and Y.T.), an EFSD/Lilly grant (to Y.T.), a European Research Council Grant (to A.D.), a CCI Walter-Hitzig-Fellowship (to V.S.), an EMBO Long Term Fellowship (ALTF 508-2011 to A.L.C.) and the FP6 Marie Curie Research Training Network (grant MRTN-CT-2004-005632 (IMDEMI) to A.W.).

Author information

Authors and Affiliations

Authors

Contributions

C.S.N.K. carried out most of the experiments and analysed data, E.A.K. performed infection experiments, histology and immunofluorescence staining, V.S. carried out the analysis of microbial communities, K.E. and N.G. contributed to the infection experiments, T.H. contributed to the analysis of lymphoid organogenesis, Y.d’H. carried out immunofluorescence staining, and A.L.C. and A.W. generated and provided IL-17f–creTg mice. A.D. and Y.T. designed the study, coordinated the experimental work and analysed data. A.D. directed the research and wrote the manuscript with input from co-authors.

Corresponding author

Correspondence to Andreas Diefenbach.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-17. (PDF 957 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klose, C., Kiss, E., Schwierzeck, V. et al. A T-bet gradient controls the fate and function of CCR6RORγt+ innate lymphoid cells. Nature 494, 261–265 (2013). https://doi.org/10.1038/nature11813

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11813

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing