Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The microbiota in adaptive immune homeostasis and disease

Abstract

In the mucosa, the immune system's T cells and B cells have position-specific phenotypes and functions that are influenced by the microbiota. These cells play pivotal parts in the maintenance of immune homeostasis by suppressing responses to harmless antigens and by enforcing the integrity of the barrier functions of the gut mucosa. Imbalances in the gut microbiota, known as dysbiosis, can trigger several immune disorders through the activity of T cells that are both near to and distant from the site of their induction. Elucidation of the mechanisms that distinguish between homeostatic and pathogenic microbiota–host interactions could identify therapeutic targets for preventing or modulating inflammatory diseases and for boosting the efficacy of cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of IgA in mucosal tissues.
Figure 2: Microbiota-mediated induction of TH17 cells and autoimmunity.
Figure 3: Influence of the microbiota and diet on subsets of regulatory T cells in the intestine.

Similar content being viewed by others

References

  1. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009). Together with ref. 50, this study shows that a subset of the microbiota specifically affects the accumulation of T H 17 cells in the intestine.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wu, H.-J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015). Together with refs 125 and 126, this study shows that a subset of the microbiota can have an effect on the efficacy of cancer therapy.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013). This study and ref. 5 show that a rationally selected consortium of bacteria can specifically induce T reg cells in the intestine that function in systemic immune regulation.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Kau, A. L. et al. Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci. Transl. Med. 7, 276ra24 (2015). Together with refs 7 and 8, this study shows that IgA-SEQ is a powerful technique for identifying taxa that provide a strong stimulus to the host's immune system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Palm, N. W. et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158, 1000–1010 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bunker, J. J. et al. Innate and adaptive humoral responses coat distinct commensal bacteria with immunoglobulin A. Immunity 43, 541–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Beura, L. K. et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 532, 512–516 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roche, A. M., Richard, A. L., Rahkola, J. T., Janoff, E. N. & Weiser, J. N. Antibody blocks acquisition of bacterial colonization through agglutination. Mucosal Immunol. 8, 176–185 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Pabst, O. New concepts in the generation and functions of IgA. Nature Rev. Immunol. 12, 821–832 (2012).

    Article  CAS  Google Scholar 

  12. Peterson, D. A., McNulty, N. P., Guruge, J. L. & Gordon, J. I. IgA response to symbiotic bacteria as a mediator of gut homeostasis. Cell Host Microbe 2, 328–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  13. Cullender, T. C. et al. Innate and adaptive immunity interact to quench microbiome flagellar motility in the gut. Cell Host Microbe 14, 571–581 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kawamoto, S. et al. Foxp3+ T cells regulate immunoglobulin A selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity 41, 152–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Friman, V., Nowrouzian, F., Adlerberth, I. & Wold, A. E. Increased frequency of intestinal Escherichia coli carrying genes for S fimbriae and haemolysin in IgA-deficient individuals. Microb. Pathog. 32, 35–42 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Wei, M. et al. Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. Nature Immunol. 12, 264–270 (2011).

    Article  CAS  Google Scholar 

  17. Moon, C. et al. Vertically transmitted faecal IgA levels determine extra-chromosomal phenotypic variation. Nature 521, 90–93 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kubinak, J. L. et al. MyD88 signaling in T cells directs IgA-mediated control of the microbiota to promote health. Cell Host Microbe 17, 153–163 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hirota, K. et al. Plasticity of TH17 cells in Peyer's patches is responsible for the induction of T cell-dependent IgA responses. Nature Immunol. 14, 372–379 (2013).

    Article  CAS  Google Scholar 

  20. Hapfelmeier, S. et al. Reversible microbial colonization of germ-free mice reveals the dynamics of IgA immune responses. Science 328, 1705–1709 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindner, C. et al. Diversification of memory B cells drives the continuous adaptation of secretory antibodies to gut microbiota. Nature Immunol. 16, 880–888 (2015).

    Article  CAS  Google Scholar 

  22. Ivanov, I. I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Ivanov, I. I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Weaver, C. T., Elson, C. O., Fouser, L. A. & Kolls, J. K. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu. Rev. Pathol. 8, 477–512 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Puel, A. et al. Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 332, 65–68 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Okada, S. et al. Impairment of immunity to Candida and Mycobacterium in humans with bi-allelic RORC mutations. Science 349, 606–613 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ishigame, H. et al. Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30, 108–119 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. McGeachy, M. J. et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nature Immunol. 10, 314–324 (2009).

    Article  CAS  Google Scholar 

  30. Coccia, M. et al. IL-1β mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4+ Th17 cells. J. Exp. Med. 209, 1595–1609 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nature Immunol. 12, 255–263 (2011).

    Article  CAS  Google Scholar 

  32. El-Behi, M. et al. The encephalitogenicity of TH17 cells is dependent on IL-1- and IL-23-induced production of the cytokine GM-CSF. Nature Immunol. 12, 568–575 (2011).

    Article  CAS  Google Scholar 

  33. Harbour, S. N., Maynard, C. L., Zindl, C. L., Schoeb, T. R. & Weaver, C. T. Th17 cells give rise to Th1 cells that are required for the pathogenesis of colitis. Proc. Natl Acad. Sci. USA 112, 7061–7066 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ahern, P. P. et al. Interleukin-23 drives intestinal inflammation through direct activity on T cells. Immunity 33, 279–288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jain, R. et al. Interleukin-23-induced transcription factor Blimp-1 promotes pathogenicity of T helper 17 cells. Immunity 44, 131–142 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Wu, C. et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 496, 513–517 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kleinewietfeld, M. et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496, 518–522 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, P. M. et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569–573 (2013). Together with refs 39–41, this study identified short-chain fatty acids as strong inducers of T reg cells in the colon.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Haghikia, A. et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 43, 817–829 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Berod, L. et al. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nature Med. 20, 1327–1333 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Santori, F. R. et al. Identification of natural RORγ ligands that regulate the development of lymphoid cells. Cell Metab. 21, 286–297 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, C. et al. CD5L/AIM regulates lipid biosynthesis and restrains Th17 cell pathogenicity. Cell 163, 1413–1427 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science 337, 1115–1119 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Umesaki, Y., Setoyama, H., Matsumoto, S., Imaoka, A. & Itoh, K. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect. Immun. 67, 3504–3511 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lécuyer, E. et al. Segmented filamentous bacterium uses secondary and tertiary lymphoid tissues to induce gut IgA and specific T helper 17 cell responses. Immunity 40, 608–620 (2014).

    Article  PubMed  CAS  Google Scholar 

  48. Goto, Y. et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345, 1254009 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Prakash, T. et al. Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. Cell Host Microbe 10, 273–284 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Atarashi, K. et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 163, 367–380 (2015). Together with ref. 51, this study shows that the response of intestinal T H 17 cells is directed towards commensal and pathogenic bacteria that activate epithelial cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sano, T. et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 163, 381–393 (2015); erratum 164, 324 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schnupf, P. et al. Growth and host interaction of mouse segmented filamentous bacteria in vitro. Nature 520, 99–103 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Panea, C. et al. Intestinal monocyte-derived macrophages control commensal-specific Th17 responses. Cell Rep. 12, 1314–1324 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lewis, K. L. et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 35, 780–791 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Persson, E. K. et al. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38, 958–969 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Schlitzer, A. et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38, 970–983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Derebe, M. G. et al. Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection. eLife 3, e03206 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sczesnak, A. et al. The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 10, 260–272 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang, Y. et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510, 152–156 (2014). This study and ref. 122 show that different constituents of the microbiota guide distinct pathways of T-cell differentiation that is specific for the antigens of commensal bacteria.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Block, K. E., Zheng, Z., Dent, A. L., Kee, B. L. & Huang, H. Gut microbiota regulates K/BxN autoimmune arthritis through follicular helper T but not Th17 cells. J. Immunol. 196, 1550–1557 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108 (suppl. 1), 4615–4622 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Kriegel, M. A. et al. Naturally transmitted segmented filamentous bacteria segregate with diabetes protection in nonobese diabetic mice. Proc. Natl Acad. Sci. USA 108, 11548–11553 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fransen, F. et al. BALB/c and C57BL/6 mice differ in polyreactive IgA abundance, which impacts the generation of antigen-specific IgA and microbiota diversity. Immunity 43, 527–540 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Morton, A. M. et al. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc. Natl Acad. Sci. USA 111, 6696–6701 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Horai, R. et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity 43, 343–353 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Berer, K. et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479, 538–541 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  67. Harkiolaki, M. et al. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 30, 348–357 (2009).

    Article  CAS  PubMed  Google Scholar 

  68. Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Hepworth, M. R. et al. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells. Science 348, 1031–1035 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Round, J. L. & Mazmanian, S. K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc. Natl Acad. Sci. USA 107, 12204–12209 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  71. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic regulatory T cell responses. Immunity 34, 794–806 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Weiss, J. M. et al. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209, 1723–1742 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stefka, A. T. et al. Commensal bacteria protect against food allergen sensitization. Proc. Natl Acad. Sci. USA 111, 13145–13150 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bilate, A. M. & Lafaille, J. J. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu. Rev. Immunol. 30, 733–758 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Josefowicz, S. Z., Lu, L. F. & Rudensky, A. Y. Regulatory T cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kim, S. V. et al. GPR15-mediated homing controls immune homeostasis in the large intestine mucosa. Science 340, 1456–1459 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ohnmacht, C. et al. The microbiota regulates type 2 immunity through RORγt+ T cells. Science 349, 989–993 (2015). Together with refs 78 and 79, this study shows that a subset of T reg cells in the intestine express RORγt and that their development is affected by the microbiota.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Sefik, E. et al. Individual intestinal symbionts induce a distinct population of RORγ+ regulatory T cells. Science 349, 993–997 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yang, B. H. et al. Foxp3 T cells expressing RORγt represent a stable regulatory T-cell effector lineage with enhanced suppressive capacity during intestinal inflammation. Mucosal Immunol. 9, 444–457 (2016).

    Article  CAS  PubMed  Google Scholar 

  80. Lathrop, S. K. et al. Peripheral education of the immune system by colonic commensal microbiota. Nature 478, 250–254 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Roers, A. et al. T cell-specific inactivation of the interleukin 10 gene in mice results in enhanced T cell responses but normal innate responses to lipopolysaccharide or skin irritation. J. Exp. Med. 200, 1289–1297 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Krause, P. et al. IL-10-producing intestinal macrophages prevent excessive antibacterial innate immunity by limiting IL-23 synthesis. Nature Commun. 6, 7055 (2015).

    Article  ADS  CAS  Google Scholar 

  83. Rubtsov, Y. P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Huber, S. et al. Th17 cells express interleukin-10 receptor and are controlled by Foxp3 and Foxp3+ regulatory CD4+ T cells in an interleukin-10-dependent manner. Immunity 34, 554–565 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Park, S. G. et al. T regulatory cells maintain intestinal homeostasis by suppressing γδ T cells. Immunity 33, 791–803 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Gagliani, N. et al. TH17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221–225 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wohlfert, E. A. et al. GATA3 controls Foxp3+ regulatory T cell fate during inflammation in mice. J. Clin. Invest. 121, 4503–4515 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kim, K. S. et al. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 351, 858–863 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  90. Itoh, K. & Mitsuoka, T. Characterization of Clostridia isolated from faeces of limited flora mice and their effect on caecal size when associated with germ-free mice. Lab. Anim. 19, 111–118 (1985).

    Article  CAS  PubMed  Google Scholar 

  91. Mathewson, N. D. et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft-versus-host disease. Nature Immunol. 17, 505–513 (2016).

    Article  CAS  Google Scholar 

  92. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Sarrabayrouse, G. et al. CD4CD8αα lymphocytes, a novel human regulatory T cell subset induced by colonic bacteria and deficient in patients with inflammatory bowel disease. PLoS Biol. 12, e1001833 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Reis, B. S., Rogoz, A., Costa-Pinto, F. A., Taniuchi, I. & Mucida, D. Mutual expression of the transcription factors Runx3 and ThPOK regulates intestinal CD4+ T cell immunity. Nature Immunol. 14, 271–280 (2013).

    Article  CAS  Google Scholar 

  95. Mucida, D. et al. Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nature Immunol. 14, 281–289 (2013).

    Article  CAS  Google Scholar 

  96. Narushima, S. et al. Characterization of the 17 strains of regulatory T cell-inducing human-derived Clostridia. Gut Microbes 5, 333–339 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Singh, N. et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40, 128–139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Di Giacinto, C., Marinaro, M., Sanchez, M., Strober, W. & Boirivant, M. Probiotics ameliorate recurrent Th1-mediated murine colitis by inducing IL-10 and IL-10-dependent TGF-β-bearing regulatory cells. J. Immunol. 174, 3237–3246 (2005).

    Article  CAS  PubMed  Google Scholar 

  99. Karimi, K., Inman, M. D., Bienenstock, J. & Forsythe, P. Lactobacillus reuteri-induced regulatory T cells protect against an allergic airway response in mice. Am. J. Respir. Crit. Care Med. 179, 186–193 (2009).

    Article  CAS  PubMed  Google Scholar 

  100. Tang, C. et al. Inhibition of Dectin-1 signaling ameliorates colitis by inducing Lactobacillus-mediated regulatory T cell expansion in the intestine. Cell Host Microbe 18, 183–197 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Kullberg, M. C. et al. Bacteria-triggered CD4+ T regulatory cells suppress Helicobacter hepaticus-induced colitis. J. Exp. Med. 196, 505–515 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Shen, Y. et al. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12, 509–520 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Faith, J. J., Ahern, P. P., Ridaura, V. K., Cheng, J. & Gordon, J. I. Identifying gut microbe–host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6, 220ra11 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Coombes, J. L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sun, C. M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mortha, A. et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343, 1249288 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Loschko, J. et al. Absence of MHC class II on cDCs results in microbial-dependent intestinal inflammation. J. Exp. Med. 213, 517–534 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Stary, G. et al. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science 348, aaa8205 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Scharschmidt, T. C. et al. A wave of regulatory T cells into neonatal skin mediates tolerance to commensal microbes. Immunity 43, 1011–1021 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Russell, S. L. et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep. 13, 440–447 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hill, D. A. et al. Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nature Med. 18, 538–546 (2012).

    Article  CAS  PubMed  Google Scholar 

  113. Cahenzli, J., Koller, Y., Wyss, M., Geuking, M. B. & McCoy, K. D. Intestinal microbial diversity during early-life colonization shapes long-term IgE levels. Cell Host Microbe 14, 559–570 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Arrieta, M. C. et al. Early infancy microbial and metabolic alterations affect risk of childhood asthma. Sci. Transl. Med. 7, 307ra152 (2015).

    Article  PubMed  CAS  Google Scholar 

  115. Devkota, S. et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10−/− mice. Nature 487, 104–108 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Small, C. L., Reid-Yu, S. A., McPhee, J. B. & Coombes, B. K. Persistent infection with Crohn's disease-associated adherent-invasive Escherichia coli leads to chronic inflammation and intestinal fibrosis. Nature Commun. 4, 1957 (2013).

    Article  ADS  CAS  Google Scholar 

  117. Frank, D. N. et al. Disease phenotype and genotype are associated with shifts in intestinal-associated microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 179–184 (2011).

    Article  PubMed  Google Scholar 

  118. Ramanan, D., Tang, M. S., Bowcutt, R., Loke, P. & Cadwell, K. Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 41, 311–324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Gevers, D. et al. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15, 382–392 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Vujkovic-Cvijin, I. et al. Dysbiosis of the gut microbiota is associated with HIV disease progression and tryptophan catabolism. Sci. Transl. Med. 5, 193ra91 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Hand, T. W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337, 1553–1556 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  123. Cong, Y., Feng, T., Fujihashi, K., Schoeb, T. R. & Elson, C. O. A dominant, coordinated T regulatory cell-IgA response to the intestinal microbiota. Proc. Natl Acad. Sci. USA 106, 19256–19261 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lodes, M. J. et al. Bacterial flagellin is a dominant antigen in Crohn disease. J. Clin. Invest. 113, 1296–1306 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Viaud, S. et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342, 971–976 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  126. Vétizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  127. Charbonneau, M. R. et al. Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164, 859–871 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Cao, A. T. et al. Interleukin (IL)-21 promotes intestinal IgA response to microbiota. Mucosal Immunol. 8, 1072–1082 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Kruglov, A. A. et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science 342, 1243–1246 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  130. Sonnenberg, G. F., Monticelli, L. A., Elloso, M. M., Fouser, L. A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134 (2011).

    Article  CAS  PubMed  Google Scholar 

  131. Longman, R. S. et al. CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211, 1571–1583 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  134. Naik, S. et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature. Nature 520, 104–108 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ichinohe, T. et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl Acad. Sci. USA 108, 5354–5359 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by: grants from the Japan Agency for Medical Research and Development (AMED) and the Takeda Science Foundation (K.H.); US National Institutes of Health grant RO1DK103358 and the Howard Hughes Medical Institute (D.R.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenya Honda or Dan R. Littman.

Ethics declarations

Competing interests

The authors are scientific co-founders and consultants for Vedanta Biosciences, which specializes in microbiome-based therapeutics.

Additional information

Reprints and permissions information is available at www.nature.com.reprints.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Honda, K., Littman, D. The microbiota in adaptive immune homeostasis and disease. Nature 535, 75–84 (2016). https://doi.org/10.1038/nature18848

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature18848

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing