Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Massively parallel functional annotation of 3′ untranslated regions

Subjects

Abstract

Functional characterization of noncoding sequences is crucial for understanding the human genome and learning how genetic variation contributes to disease. 3′ untranslated regions (UTRs) are an important class of noncoding sequences, but their functions remain largely uncharacterized1. We developed a method for massively parallel functional annotation of sequences from 3′ UTRs (fast-UTR) and used this approach to measure the effects of a total of >450 kilobases of 3′ UTR sequences from >2,000 human genes on steady-state mRNA abundance, mRNA stability and protein production. We found widespread regulatory effects on mRNA that were coupled to effects on mRNA stability and protein production. Furthermore, we discovered 87 novel cis-regulatory elements and measured the effects of genetic variation within known and novel 3′ UTR motifs. This work shows how massively parallel approaches can improve the functional annotation of noncoding sequences, advance our understanding of cis-regulatory mechanisms and quantify the effects of human genetic variation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The fast-UTR system.
Figure 2: Effects of conserved 3′ UTR sequences on steady-state mRNA, mRNA stability and protein production.
Figure 3: Functional elements identified using fast-UTR.

Similar content being viewed by others

Accession codes

Primary accessions

Sequence Read Archive

Referenced accessions

Gene Expression Omnibus

NCBI Reference Sequence

References

  1. Zhao, W., Blagev, D., Pollack, J.L. & Erle, D.J. Toward a systematic understanding of mRNA 3′ untranslated regions. Proc. Am. Thorac. Soc. 8, 163–166 (2011).

    Article  CAS  Google Scholar 

  2. Barreau, C., Paillard, L. & Osborne, H.B. AU-rich elements and associated factors: are there unifying principles? Nucleic Acids Res. 33, 7138–7150 (2005).

    Article  CAS  Google Scholar 

  3. Wickens, M., Bernstein, D.S., Kimble, J. & Parker, R. A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet. 18, 150–157 (2002).

    Article  CAS  Google Scholar 

  4. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  5. Sharova, L.V. et al. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 16, 45–58 (2009).

    Article  CAS  Google Scholar 

  6. Chen, C.Y. & Shyu, A.B. AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465–470 (1995).

    Article  CAS  Google Scholar 

  7. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005).

    Article  CAS  Google Scholar 

  8. Goodarzi, H. et al. Systematic discovery of structural elements governing stability of mammalian messenger RNAs. Nature 485, 264–268 (2012).

    Article  CAS  Google Scholar 

  9. Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).

    Article  CAS  Google Scholar 

  10. Thomas, M., Lieberman, J. & Lal, A. Desperately seeking microRNA targets. Nat. Struct. Mol. Biol. 17, 1169–1174 (2010).

    Article  CAS  Google Scholar 

  11. Patwardhan, R.P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    Article  CAS  Google Scholar 

  12. Patwardhan, R.P. et al. Massively parallel functional dissection of mammalian enhancers in vivo. Nat. Biotechnol. 30, 265–270 (2012).

    Article  CAS  Google Scholar 

  13. Melnikov, A. et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 30, 271–277 (2012).

    Article  CAS  Google Scholar 

  14. Numahata, K. et al. Analysis of the mechanism regulating the stability of rat macrophage inflammatory protein-2 mRNA in RBL-2H3 cells. J. Cell. Biochem. 90, 976–986 (2003).

    Article  CAS  Google Scholar 

  15. Bazzini, A.A., Lee, M.T. & Giraldez, A.J. Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336, 233–237 (2012).

    Article  CAS  Google Scholar 

  16. Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237–240 (2012).

    Article  CAS  Google Scholar 

  17. Guo, H., Ingolia, N.T., Weissman, J.S. & Bartel, D.P. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835–840 (2010).

    Article  CAS  Google Scholar 

  18. Wang, S. et al. Nitric oxide activation of Erk1/2 regulates the stability and translation of mRNA transcripts containing CU-rich elements. Nucleic Acids Res. 34, 3044–3056 (2006).

    Article  CAS  Google Scholar 

  19. Galgano, A. et al. Comparative analysis of mRNA targets for human PUF-family proteins suggests extensive interaction with the miRNA regulatory system. PLoS ONE 3, e3164 (2008).

    Article  Google Scholar 

  20. Morris, A.R., Mukherjee, N. & Keene, J.D. Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets. Mol. Cell. Biol. 28, 4093–4103 (2008).

    Article  CAS  Google Scholar 

  21. Ray, D. et al. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499, 172–177 (2013).

    Article  CAS  Google Scholar 

  22. Pedersen, J.S. et al. Identification and classification of conserved RNA secondary structures in the human genome. PLOS Comput. Biol. 2, e33 (2006).

    Article  CAS  Google Scholar 

  23. Garcia, D.M. et al. Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat. Struct. Mol. Biol. 18, 1139–1146 (2011).

    Article  CAS  Google Scholar 

  24. Sandberg, R., Neilson, J.R., Sarma, A., Sharp, P.A. & Burge, C.B. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).

    Article  CAS  Google Scholar 

  25. Mayr, C. & Bartel, D.P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009).

    Article  CAS  Google Scholar 

  26. Spies, N., Burge, C.B. & Bartel, D.P. 3′ UTR-isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res. 23, 2078–2090 (2013).

    Article  CAS  Google Scholar 

  27. Lianoglou, S., Garg, V., Yang, J.L., Leslie, C.S. & Mayr, C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev. 27, 2380–2396 (2013).

    Article  CAS  Google Scholar 

  28. Schork, A.J. et al. All SNPs are not created equal: genome-wide association studies reveal a consistent pattern of enrichment among functionally annotated SNPs. PLoS Genet. 9, e1003449 (2013).

    Article  CAS  Google Scholar 

  29. Amendola, M., Venneri, M.A., Biffi, A., Vigna, E. & Naldini, L. Coordinate dual-gene transgenesis by lentiviral vectors carrying synthetic bidirectional promoters. Nat. Biotechnol. 23, 108–116 (2005).

    Article  CAS  Google Scholar 

  30. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89, 5547–5551 (1992).

    Article  CAS  Google Scholar 

  31. Chen, C.Y. et al. Versatile applications of transcriptional pulsing to study mRNA turnover in mammalian cells. RNA 13, 1775–1786 (2007).

    Article  CAS  Google Scholar 

  32. Yuan, J.S., Reed, A., Chen, F. & Stewart, C.N. Jr. Statistical analysis of real-time PCR data. BMC Bioinformatics 7, 85 (2006).

    Article  Google Scholar 

  33. Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  Google Scholar 

  34. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  35. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  Google Scholar 

  36. Bailey, T.L. DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–1659 (2011).

    Article  CAS  Google Scholar 

  37. Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 153, 869–881 (2013).

    Article  CAS  Google Scholar 

  38. Holcik, M. & Liebhaber, S.A. Four highly stable eukaryotic mRNAs assemble 3′ untranslated region RNA-protein complexes sharing cis and trans components. Proc. Natl. Acad. Sci. USA 94, 2410–2414 (1997).

    Article  CAS  Google Scholar 

  39. Grant, C.E., Bailey, T.L. & Noble, W.S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  Google Scholar 

  40. Yang, E. et al. Decay rates of human mRNAs: correlation with functional characteristics and sequence attributes. Genome Res. 13, 1863–1872 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.M. Ansel, R. Barbeau, A. Barczak, S.E. Brenner, K. Chin, C. Eisley, E. Ostrin, S.-W. Park, A. Sayce, T. Wang and G. Zhang for advice and technical assistance. We thank A. Shyu (University of Texas Health Science Center at Houston) for providing BEAS-2B tTA cells. This work was supported by research grants (D.J.E.) and a training grant (D.P.B.) from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

D.J.E. and W.Z. conceived of key aspects of the project and designed the experiments. W.Z. and D.P.B. carried out the experimental work. M.T.M. contributed to the design and interpretation of the experiments. D.J.E., J.L.P., N.Z. and W.Z. analyzed the data. D.J.E. and W.Z. wrote the manuscript. All authors reviewed and commented on the manuscript.

Corresponding author

Correspondence to David J Erle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Tables 1–4, and Supplementary Notes 1 and 2 (PDF 1429 kb)

Supplementary Data 1

CXCL2 fast-UTR genome browser tracks (TXT 26 kb)

Supplementary Data 2

Conserved 3′ UTR segment sequences (XLS 857 kb)

Supplementary Data 3

3′ UTR effects on mRNA levels and stability (XLS 350 kb)

Supplementary Data 4

3′ UTR sequences enriched in sorted cells with high or low reporter protein levels (XLS 90 kb)

Supplementary Data 5

miRNA profiling of BEAS-2B cells (XLS 181 kb)

Supplementary Data 6

Cis-regulatory elements identified using fast-UTR (XLS 87 kb)

Supplementary Data 7

Conserved 3′ UTR segment fast-UTR genome browser tracks (TXT 554 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Pollack, J., Blagev, D. et al. Massively parallel functional annotation of 3′ untranslated regions. Nat Biotechnol 32, 387–391 (2014). https://doi.org/10.1038/nbt.2851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.2851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing