Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis

Abstract

MicroRNAs (miRNAs or miRs) regulate diverse normal and abnormal cell functions. We have identified a regulatory pathway in normal megakaryopoiesis, involving the PLZF transcription factor, miR-146a and the SDF-1 receptor CXCR4. In leukaemic cell lines PLZF overexpression downmodulated miR-146a and upregulated CXCR4 protein, whereas PLZF knockdown induced the opposite effects. In vitro assays showed that PLZF interacts with and inhibits the miR-146a promoter, and that miR-146a targets CXCR4 mRNA, impeding its translation. In megakaryopoietic cultures of CD34+ progenitors, PLZF was upregulated, whereas miR-146a expression decreased and CXCR4 protein increased. MiR-146a overexpression and PLZF or CXCR4 silencing impaired megakaryocytic (Mk) proliferation, differentiation and maturation, as well as Mk colony formation. Mir-146a knockdown induced the opposite effects. Rescue experiments indicated that the effects of PLZF and miR-146a are mediated by miR-146a and CXCR4, respectively. Our data indicate that megakaryopoiesis is controlled by a cascade pathway, in which PLZF suppresses miR-146a transcription and thereby activates CXCR4 translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Enhanced PLZF expression in K562 cells is associated with miR-146a downmodulation and CXCR4 protein upregulation.
Figure 2: PLZF, miR-146a and CXCR4 expression in purified HPCs induced to Mk differentiation.
Figure 3: PLZF binds and represses miR-146a promoter, whereas miR-146a interacts with CXCR4 mRNA-3´UTR and inhibits mRNA translation.
Figure 4: Ectopic miR-146a expression in Mk cells downregulates CXCR4 protein expression and impairs Mk cell growth, differentiation and maturation and Mk progenitor clonogenesis.
Figure 5: AntagomiR-146a transfection in Mk cells upregulates CXCR4 protein expression and stimulates Mk cell growth, differentiation and maturation.
Figure 6: Inhibition of PLZF expression by siRNA treatment impairs Mk cell growth, differentiation-maturation and Mk progenitor clonogenesis.
Figure 7: Inhibition of CXCR4 expression by siRNA treatment impairs Mk cell growth, differentiation-maturation and Mk progenitor clonogenesis.
Figure 8: Restored miR-146a expression in K562-PLZF cells blocks CXCR4 translation and impairs Mk differentiation induced by PDB.

Similar content being viewed by others

References

  1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  2. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004).

    Article  CAS  Google Scholar 

  3. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004).

    Article  CAS  Google Scholar 

  4. Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515–524 (2006).

    Article  CAS  Google Scholar 

  5. Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005).

    Article  CAS  Google Scholar 

  6. Naguibneva, I. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nature Cell Biol. 8, 278–284 (2006).

    Article  CAS  Google Scholar 

  7. Chen, J. F. et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nature Genet. 38, 228–233 (2006).

    Article  CAS  Google Scholar 

  8. Esquela-Kerscher, A. & Slack, F. J. Oncomirs - microRNAs with a role in cancer. Nature Rev. Cancer 6, 259–269 (2006).

    Article  CAS  Google Scholar 

  9. Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004).

    Article  CAS  Google Scholar 

  10. Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα egulates human granulopoiesis. Cell 123, 819–831 (2005).

    Article  CAS  Google Scholar 

  11. Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl Acad. Sci. USA 102, 18081–18086 (2005).

    Article  CAS  Google Scholar 

  12. Fontana, L. et al. MicroRNAs 17–5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nature Cell Biol. 9, 775–787 (2007).

    Article  CAS  Google Scholar 

  13. Georgantas, R. W. et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc. Natl Acad. Sci. USA 104, 2750–2755 (2007).

    Article  CAS  Google Scholar 

  14. Kelly, K. F. & Daniel, J. M. POZ for effect-POZ-ZF transcription factors in cancer and development. Trends Cell Biol. 16, 578–587 (2006).

    Article  CAS  Google Scholar 

  15. Ball, H., Melnick, A., Shaknovich, R., Kohanski, R. & Licht, JD. The promyelocytic leukemia zinc finger (PLZF) protein binds DNA in a high molecular weight complex associated with cdc2 kinase. Nucleic Acids Res. 27, 4106–4113 (1999).

    Article  CAS  Google Scholar 

  16. Labbaye, C. et al. PLZF induces megakaryocytic development, activates Tpo receptor expression and interacts with GATA1 protein. Oncogene 21, 6669–6679 (2002).

    Article  CAS  Google Scholar 

  17. Melnick, A. & Licht, J. D. Deconstructing a disease: RARα, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93, 3167–3215 (1999).

    CAS  PubMed  Google Scholar 

  18. Parrado, A. et al. Deregulated expression of promyelocytic leukemia zinc finger protein in B-cell chronic lymphocytic leukemias does not affect cyclin A expression. Hematol. J. 1, 15–27 (2000).

    Article  CAS  Google Scholar 

  19. Felicetti, F. et al. A. Role of PLZF in melanoma progression. Oncogene 23, 4567–4576 (2004).

    Article  CAS  Google Scholar 

  20. Peled, A. et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283, 845–848 (1999).

    Article  CAS  Google Scholar 

  21. Gazitt, Y. Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 18, 1–10 (2004).

    Article  CAS  Google Scholar 

  22. Lapidot, T., Dar, A. & Kollet, O. How do stem cells find their way home? Blood 106, 1901–1910 (2005).

    Article  CAS  Google Scholar 

  23. Ratajczak, M. Z. et al. The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20, 1915–1924 (2006).

    Article  CAS  Google Scholar 

  24. Kucia, M. et al. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms:pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23, 879–894 (2005).

    Article  CAS  Google Scholar 

  25. Burger, J. A. & Kipps, T. J. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood 107, 1761–1767 (2006).

    Article  CAS  Google Scholar 

  26. Cottler-Fox, M. H. et al. Stem cell mobilization. Hematology 2003, 419–437 (2003).

    Article  Google Scholar 

  27. Ruiz de Almodovar, C., Luttun, A. & Carmeliet, P. An SDF-1 trap for myeloid cells stimulates angiogenesis. Cell 124, 18–21 (2006).

    Article  CAS  Google Scholar 

  28. Kim, H. K., Sierra, MD., Kimmel Williams, C., Gulino, AV. & Tosato, G. G-CSF downregulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood 108, 812–820 (2006).

    Article  CAS  Google Scholar 

  29. Dar, A. et al. Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nature Immunol. l6, 1038–1046 (2005).

    Article  Google Scholar 

  30. Avecilla, ST. et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Med. 10, 64–71 (2004).

    Article  CAS  Google Scholar 

  31. Pang, L., Weiss, M. J. & Poncz, M. Megakaryocyte biology and related disorders. J. Clin. Invest. 115, 3332–3338 (2005).

    Article  CAS  Google Scholar 

  32. Quaranta, M. T. et al. PLZF-mediated control on VLA-4 expression in normal and leukemic myeloid cells. Oncogene 25, 399–408 (2006).

    Article  CAS  Google Scholar 

  33. Testa, U. et al. Terminal megakaryocytic differentiation of TF-1 cells is induced by phorbol esters and thrombopoietin and is blocked by expression of PML/RARα fusion protein. Leukemia 12, 563–570 (1998).

    Article  CAS  Google Scholar 

  34. Tabilio, A. et al. Myeloid and megakaryocytic properties of K-562 cell lines. Cancer Res. 10, 4569–4574 (1983).

    Google Scholar 

  35. Guerriero, R. et al. Stromal cell-derived factor 1α increases polyploidization of megakaryocytes generated by human hematopoietic progenitor cells. Blood 97, 2587–2595 (2001).

    Article  CAS  Google Scholar 

  36. Ivins, S. et al. Regulation of Hoxb2 by APL-associated PLZF protein. Oncogene 22, 3685–3697 (2003).

    Article  CAS  Google Scholar 

  37. Gabbianelli, M. et al. “Pure” human hematopoietic progenitors: permissive action of basic fibroblast growth factor. Science 249, 1561–1564 (1990).

    Article  CAS  Google Scholar 

  38. Chen, C. Z. MicroRNAs as oncogenes and tumor suppressors. N. Engl. J. Med. 353, 1768–1771 (2005).

    Article  CAS  Google Scholar 

  39. Calin, G. A. et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  Google Scholar 

  40. He, H. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl Acad. Sci. USA. 102, 19075–19080 (2005).

    Article  CAS  Google Scholar 

  41. Taganov, K. D., Boldin, M. P., Chang, K. J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl Acad. Sci. USA 103, 12481–12486 (2006).

    Article  CAS  Google Scholar 

  42. Wang, J. F., Liu, Z. Y. & Groopman, J. E. The α-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood 92, 756–764 (1998).

    CAS  PubMed  Google Scholar 

  43. Garzon, R., et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc. Natl Acad. Sci. USA. 103, 5078–5083 (2006).

    Article  CAS  Google Scholar 

  44. Wang, J., Loberg, R. & Taichman, R. S. The pivotal role of CXCL12 (SDF-1)/CXCR4 axis in bone metastasis. Cancer Metastasis Rev. 25, 573–587 (2006).

    Article  CAS  Google Scholar 

  45. Littman, D. R. Chemokine receptors: keys to AIDS pathogenesis? Cell 93, 677–680 (1998).

    Article  CAS  Google Scholar 

  46. Nanki, T. et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+ T cell accumulation in rheumatoid arthritis synovium. J. Immunol. 165, 6590–6598 (2000).

    Article  CAS  Google Scholar 

  47. Tamamura, H. & Fujii, N. The therapeutic potential of CXCR4 antagonists in the treatment of HIV infection, cancer metastasis and rheumatoid arthritis. Expert Opin. Ther. Targets 9, 1267–1282 (2005).

    Article  CAS  Google Scholar 

  48. Carè, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nature Med. 13, 613–618 (2007).

    Article  Google Scholar 

  49. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to M. Fontana, V. Michetti and M. Blasi for editorial assistance. We thank G. Loreto for graphics and A. M. Cerio for technical support. This work was supported by Italy National Grants (Progetto Oncotecnologico, Programma Nazionale Italia-USA in Oncologia) to C.P., institutional grants from the Italian Ministry of Health (Alleanza Contro il Cancro, Programma Straordinario di Ricerca Oncologica 2006) to U.T. and C.L. and Associazione Italiana per la Ricerca sul Cancro (AIRC) to R.F. and F.G.

Author information

Authors and Affiliations

Authors

Contributions

C.L., I.S. M.T.Q., E.P., L.P., E.P., M.B., E.R.N., R.F. and U.T. performed experiments; E.B. provided cord-blood samples; F.G. revised the paper. C.L. and C.P. planned and designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Catherine Labbaye or Cesare Peschle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5 and Supplementary Methods (PDF 800 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Labbaye, C., Spinello, I., Quaranta, M. et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 10, 788–801 (2008). https://doi.org/10.1038/ncb1741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing