Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot

Abstract

Dynamic actin remodelling processes at the leading edge of migrating tumour cells are concerted events controlled by a fine-tuned temporal and spatial interplay of kinases and phosphatases. Actin severing is regulated by actin depolymerizing factor (ADF)/cofilin, which regulates stimulus-induced lamellipodia protrusion and directed cell motility. Cofilin is activated by dephosphorylation through phosphatases of the slingshot (SSH) family. SSH activity is strongly increased by its binding to filamentous actin (F-actin); however, other upstream regulators remain unknown. Here we show that in response to RhoA activation, protein kinase D1 (PKD1) phosphorylates the SSH enzyme SSH1L at a serine residue located in its actin-binding motif. This generates a 14-3-3-binding motif and blocks the localization of SSH1L to F-actin-rich structures in the lamellipodium by sequestering it in the cytoplasm. Consequently, expression of constitutively active PKD1 in invasive tumour cells enhanced the phosphorylation of cofilin and effectively blocked the formation of free actin-filament barbed ends and directed cell migration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co-localization of PKD1 with SSH1L at peripheral F-actin structures.
Figure 2: PKD1 phosphorylates SSH1L in vitro and in vivo.
Figure 3: PKD1 phosphorylates SSH1L downstream of RhoA.
Figure 4: PKD1-mediated phosphorylation regulates SSH1L localization.
Figure 5: Phosphorylation of SSH1L at S978 controls its association with 14-3-3 proteins.
Figure 6: PKD1 regulates the phosphorylation of cofilin at S3.
Figure 7: PKD1 regulates the formation of free actin-filament barbed ends and cell migration.

Similar content being viewed by others

References

  1. Bamburg, J. R., McGough, A. & Ono, S. Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell. Biol. 9, 364–370 (1999).

    Article  CAS  Google Scholar 

  2. Pollard, T. D. & Borisy, G. G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453–465 (2003).

    Article  CAS  Google Scholar 

  3. Yamaguchi, H. & Condeelis, J. Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773, 642–652 (2007).

    Article  CAS  Google Scholar 

  4. Mouneimne, G. et al. Spatial and temporal control of cofilin activity is required for directional sensing during chemotaxis. Curr. Biol. 16, 2193–2205 (2006).

    Article  CAS  Google Scholar 

  5. Sinha, P. et al. Increased expression of epidermal fatty acid binding protein, cofilin, and 14–3-3-sigma (stratifin) detected by two-dimensional gel electrophoresis, mass spectrometry and microsequencing of drug-resistant human adenocarcinoma of the pancreas. Electrophoresis 20, 2952–2960 (1999).

    Article  CAS  Google Scholar 

  6. Wang, W., Eddy, R. & Condeelis, J. The cofilin pathway in breast cancer invasion and metastasis. Nature Rev. Cancer 7, 429–440 (2007).

    Article  CAS  Google Scholar 

  7. Wang, W. et al. The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol 173, 395–404 (2006).

    Article  CAS  Google Scholar 

  8. Nishita, M. et al. Spatial and temporal regulation of cofilin activity by LIM kinase and Slingshot is critical for directional cell migration. J. Cell Biol. 171, 349–359 (2005).

    Article  CAS  Google Scholar 

  9. Mizuno, K. et al. Identification of a human cDNA encoding a novel protein kinase with two repeats of the LIM/double zinc finger motif. Oncogene 9, 1605–1612 (1994).

    CAS  PubMed  Google Scholar 

  10. Huang, T. Y., DerMardirossian, C. & Bokoch, G. M. Cofilin phosphatases and regulation of actin dynamics. Curr. Opin. Cell Biol. 18, 26–31 (2006).

    Article  CAS  Google Scholar 

  11. Toshima, J. et al. Cofilin phosphorylation by protein kinase testicular protein kinase 1 and its role in integrin-mediated actin reorganization and focal adhesion formation. Mol. Biol. Cell 12, 1131–1145 (2001).

    Article  CAS  Google Scholar 

  12. Agnew, B. J., Minamide, L. S. & Bamburg, J. R. Reactivation of phosphorylated actin depolymerizing factor and identification of the regulatory site. J. Biol. Chem. 270, 17582–17587 (1995).

    Article  CAS  Google Scholar 

  13. Nagata-Ohashi, K. et al. A pathway of neuregulin-induced activation of cofilin-phosphatase Slingshot and cofilin in lamellipodia. J. Cell Biol. 165, 465–471 (2004).

    Article  Google Scholar 

  14. Niwa, R., Nagata-Ohashi, K., Takeichi, M., Mizuno, K. & Uemura, T. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108, 233–246 (2002).

    Article  CAS  Google Scholar 

  15. Nishita, M. et al. Phosphoinositide 3-kinase-mediated activation of cofilin phosphatase Slingshot and its role for insulin-induced membrane protrusion. J. Biol. Chem. 279, 7193–7198 (2004).

    Article  CAS  Google Scholar 

  16. Zugaza, J. L., Waldron, R. T., Sinnett-Smith, J. & Rozengurt, E. Bombesin, vasopressin, endothelin, bradykinin, and platelet-derived growth factor rapidly activate protein kinase D through a protein kinase C-dependent signal transduction pathway. J. Biol. Chem. 272, 23952–23960 (1997).

    Article  CAS  Google Scholar 

  17. Hausser, A. et al. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex. Nature Cell Biol. 7, 880–886 (2005).

    Article  CAS  Google Scholar 

  18. Liljedahl, M. et al. Protein kinase D regulates the fission of cell surface destined transport carriers from the trans-Golgi network. Cell 104, 409–420 (2001).

    Article  CAS  Google Scholar 

  19. Storz, P., Döppler, H. & Toker, A. Protein kinase D mediates mitochondrion-to-nucleus signaling and detoxification from mitochondrial reactive oxygen species. Mol. Cell. Biol. 25, 8520–8530 (2005).

    Article  CAS  Google Scholar 

  20. von Blume, J. et al. Phosphorylation at Ser244 by CK1 determines nuclear localization and substrate targeting of PKD2. EMBO J. 26, 4619–4633 (2007).

    Article  CAS  Google Scholar 

  21. Eiseler, T., Schmid, M. A., Topbas, F., Pfizenmaier, K. & Hausser, A. PKD is recruited to sites of actin remodelling at the leading edge and negatively regulates cell migration. FEBS Lett. 581, 4279–4287 (2007).

    Article  CAS  Google Scholar 

  22. Jaggi, M. et al. E-cadherin phosphorylation by protein kinase D1/protein kinase Cμ is associated with altered cellular aggregation and motility in prostate cancer. Cancer Res. 65, 483–492 (2005).

    CAS  PubMed  Google Scholar 

  23. Riol-Blanco, L. et al. The neuronal protein Kidins220 localizes in a raft compartment at the leading edge of motile immature dendritic cells. Eur. J. Immunol. 34, 108–118 (2004).

    Article  CAS  Google Scholar 

  24. Yamamoto, M., Nagata-Ohashi, K., Ohta, Y., Ohashi, K. & Mizuno, K. Identification of multiple actin-binding sites in cofilin-phosphatase Slingshot-1L. FEBS Lett. 580, 1789–1794 (2006).

    Article  CAS  Google Scholar 

  25. Döppler, H., Storz, P., Li, J., Comb, M. J. & Toker, A. A phosphorylation state-specific antibody recognizes Hsp27, a novel substrate of protein kinase D. J. Biol. Chem. 280, 15013–15019 (2005).

    Article  Google Scholar 

  26. Döppler, H. & Storz, P. A novel tyrosine phosphorylation site in protein kinase D contributes to oxidative stress-mediated activation. J. Biol. Chem. 282, 31873–31881 (2007).

    Article  Google Scholar 

  27. Song, J., Li, J., Lulla, A., Evers, B. M. & Chung, D. H. Protein kinase D protects against oxidative stress-induced intestinal epithelial cell injury via Rho/ROK/PKC-δ pathway activation. Am. J. Physiol. Cell Physiol. 290, C1469–C1476 (2006).

    Article  CAS  Google Scholar 

  28. Storz, P. & Toker, A. Protein kinase D mediates a stress-induced NF-κB activation and survival pathway. EMBO J. 22, 109–120 (2003).

    Article  CAS  Google Scholar 

  29. Hutti, J. E. et al. A rapid method for determining protein kinase phosphorylation specificity. Nature Methods 1, 27–29 (2004).

    Article  CAS  Google Scholar 

  30. Maekawa, M. et al. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285, 895–898 (1999).

    Article  CAS  Google Scholar 

  31. Mullin, M. J., Lightfoot, K., Marklund, U. & Cantrell, D. A. Differential requirement for RhoA GTPase depending on the cellular localization of protein kinase D. J. Biol. Chem. 281, 25089–25096 (2006).

    Article  CAS  Google Scholar 

  32. Yuan, J., Slice, L. W. & Rozengurt, E. Activation of protein kinase D by signaling through Rho and the α subunit of the heterotrimeric G protein G13. J. Biol. Chem. 276, 38619–38627 (2001).

    Article  CAS  Google Scholar 

  33. Mouneimne, G. et al. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166, 697–708 (2004).

    Article  CAS  Google Scholar 

  34. Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32 (2004).

    Article  CAS  Google Scholar 

  35. Storz, P., Döppler, H. & Toker, A. Protein kinase Cδ selectively regulates protein kinase D-dependent activation of NF-κB in oxidative stress signaling. Mol. Cell. Biol. 24, 2614–2626 (2004).

    Article  CAS  Google Scholar 

  36. Matthews, S. A., Rozengurt, E. & Cantrell, D. Protein kinase D. A selective target for antigen receptors and a downstream target for protein kinase C in lymphocytes. J. Exp. Med. 191, 2075–2082 (2000).

    Article  CAS  Google Scholar 

  37. Rey, O., Sinnett-Smith, J., Zhukova, E. & Rozengurt, E. Regulated nucleocytoplasmic transport of protein kinase D in response to G protein-coupled receptor activation. J. Biol. Chem. 276, 49228–49235 (2001).

    Article  CAS  Google Scholar 

  38. Baron, C. L. & Malhotra, V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 295, 325–328 (2002).

    Article  CAS  Google Scholar 

  39. van Rheenen, J. et al. EGF-induced PIP2 hydrolysis releases and activates cofilin locally in carcinoma cells. J. Cell Biol. 179, 1247–1259 (2007).

    Article  CAS  Google Scholar 

  40. Sidani, M. et al. Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. J. Cell Biol. 179, 777–791 (2007).

    Article  CAS  Google Scholar 

  41. Ichetovkin, I., Grant, W. & Condeelis, J. Cofilin produces newly polymerized actin filaments that are preferred for dendritic nucleation by the Arp2/3 complex. Curr. Biol. 12, 79–84 (2002).

    Article  CAS  Google Scholar 

  42. Dawe, H. R., Minamide, L. S., Bamburg, J. R. & Cramer, L. P. ADF/cofilin controls cell polarity during fibroblast migration. Curr. Biol. 13, 252–257 (2003).

    Article  CAS  Google Scholar 

  43. Zebda, N. et al. Phosphorylation of ADF/cofilin abolishes EGF-induced actin nucleation at the leading edge and subsequent lamellipod extension. J. Cell Biol. 151, 1119–1128 (2000).

    Article  CAS  Google Scholar 

  44. Storz, P., Döppler, H., Johannes, F. J. & Toker, A. Tyrosine phosphorylation of protein kinase D in the pleckstrin homology domain leads to activation. J. Biol. Chem. 278, 17969–17976 (2003).

    Article  CAS  Google Scholar 

  45. Cai, L., Marshall, T. W., Uetrecht, A. C., Schafer, D. A. & Bear, J. E. Coronin 1B coordinates Arp2/3 complex and cofilin activities at the leading edge. Cell 128, 915–929 (2007).

    Article  CAS  Google Scholar 

  46. Jauliac, S. et al. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nature Cell Biol. 4, 540–544 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Lewis-Tuffin for help with the video microscopy, and R. Mooney (University of Rochester Medical Center, New York) for providing MTLn3 cells. This work was sponsored in part by funds from the Mayo Foundation and the Mayo Comprehensive Cancer Center, the Mayo Clinic Breast Cancer SPORE (CA116201-03DR4), a 'Friends for an Earlier Breast Cancer Test' Grant (all to P.S.) and by a grant-in-aid for scientific research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (to K.M.).

Author information

Authors and Affiliations

Authors

Contributions

This publication is a collaborative work of the laboratories of P.S. and K.M. Data shown were generated by T.E., H.D., I.K.Y. and K.K. The data were evaluated by P.S. The manuscript was written by P.S. and K.M.

Corresponding author

Correspondence to Peter Storz.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1467 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eiseler, T., Döppler, H., Yan, I. et al. Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat Cell Biol 11, 545–556 (2009). https://doi.org/10.1038/ncb1861

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing