Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Differentiation plasticity regulated by TGF-β family proteins in development and disease

During development, stem and progenitor cells gradually commit to differentiation pathways. Cell fate decisions are regulated by differentiation factors, which activate transcription programmes that specify lineage and differentiation status. Among these factors, the transforming growth factor (TGF)-β family is important in both lineage selection and progression of differentiation of most, if not all, cell and tissue types. There is now increasing evidence that TGF-β family proteins have the ability to redirect the differentiation of cells that either have fully differentiated or have engaged in differentiation along a particular lineage, and can thereby elicit 'transdifferentiation'. This capacity for cellular plasticity is critical for normal embryonic development, but when recapitulated in the adult it can give rise to, or contribute to, a variety of diseases. This is illustrated by the ability of TGF-β family members to redirect epithelial cells into mesenchymal differentiation and to cause switching of mesenchymal cells from one lineage to another. Hence, various pathologies in adults may be considered diseases of abnormal development and differentiation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epithelial–mesenchymal transition (EMT) in development and disease.
Figure 2

References

  1. Moustakas, A. & Heldin, C.-H. Non-Smad TGF-β signals. J. Cell Sci. 118, 3573–3584 (2005).

    Article  CAS  Google Scholar 

  2. Feng, X.-H. & Derynck, R. Specificity and versatility in TGF-β signaling through Smads. Annu. Rev. Cell Dev. Biol. 21, 659–693 (2005).

    Article  CAS  Google Scholar 

  3. Massagué, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes Dev. 19, 2783–2810 (2005).

    Article  Google Scholar 

  4. Larsson, J. & Karlsson, S. The role of Smad signaling in hematopoiesis. Oncogene 24, 5676–5692 (2005).

    Article  CAS  Google Scholar 

  5. Li, M. O., Wan, Y. Y., Sanjabi, S., Robertson, A. K. & Flavell, R. A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    Article  CAS  Google Scholar 

  6. Chen, H. L. & Panchision, D. M. Bone morphogenetic protein pleiotropism in neural stem cells and their derivatives — alternative pathways, convergent signals. Stem Cells 25, 63–68 (2007).

    Article  CAS  Google Scholar 

  7. Zavadil, J. et al. Genetic programs of epithelial cell plasticity directed by transforming growth factor-β. Proc. Natl Acad. Sci. USA 98, 6686–6691 (2001).

    Article  CAS  Google Scholar 

  8. Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.-H. & Moustakas, A. TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial–mesenchymal cell transition. Mol. Biol. Cell 16, 1987–2002 (2005).

    Article  CAS  Google Scholar 

  9. Akhurst, R. J. TGF-β signaling in epithelial–mesenchymal transition and invasion/metastasis. The TGF-β Family (eds Derynck, R. & Miyazono, K.) (Cold Spring Harbor Press, Cold Spring Harbor, NY, 2007).

    Google Scholar 

  10. Oft, M., Akhurst, R. J. & Balmain, A. Metastasis is driven by sequential elevation of H-Ras and Smad2 levels. Nature Cell Biol. 4, 487–494 (2002).

    Article  CAS  Google Scholar 

  11. Yang, J. & Liu, Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am. J. Pathol. 159, 1465–1475 (2001).

    Article  CAS  Google Scholar 

  12. Gadue, P., Huber, T. L., Paddison, P. J. & Keller, G. M. Wnt and TGF-β signaling are required for the induction of an in vitro model of primitive streak formation using embryonic stem cells. Proc. Natl Acad. Sci. USA 103, 16806–16811 (2006).

    Article  CAS  Google Scholar 

  13. Cordenonsi, M. et al. Integration of TGF-β and Ras/MAPK signaling through p53 phosphorylation. Science 315, 840–843 (2007).

    Article  CAS  Google Scholar 

  14. Sirard, C. et al. The tumor suppressor gene Smad4/Dpc4 is required for gastrulation and later for anterior development of the mouse embryo. Genes Dev. 12, 107–119 (1998).

    Article  CAS  Google Scholar 

  15. Wang, J. et al. Defective ALK5 signaling in the neural crest leads to increased postmigratory neural crest cell apoptosis and severe outflow tract defects. BMC Dev. Biol. 6, 51 (2006).

    Article  Google Scholar 

  16. Mercado-Pimentel, M. E., Hubbard, A. D. & Runyan, R. B. Endoglin and ALK5 regulate epithelial–mesenchymal transformation during cardiac valve formation. Dev. Biol. 304, 420–432 (2007).

    Article  CAS  Google Scholar 

  17. Desgrosellier, J. S., Mundell, N. A., McDonnell, M. A., Moses, H. L. & Barnett, J. V. Activin receptor-like kinase 2 and Smad6 regulate epithelial–mesenchymal transformation during cardiac valve formation. Dev. Biol. 280, 201–210 (2005).

    Article  CAS  Google Scholar 

  18. Proetzel, G. et al. Transforming growth factor-β3 is required for secondary palate fusion. Nature Genet. 11, 409–414 (1995).

    Article  CAS  Google Scholar 

  19. Iwano, M. et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J. Clin. Invest. 110, 341–350 (2002).

    Article  CAS  Google Scholar 

  20. Kim, K. K. et al. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc. Natl Acad. Sci. USA 103, 13180–13185 (2006).

    Article  CAS  Google Scholar 

  21. Willis, B. C. et al. Induction of epithelial–mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol. 166, 1321–1332 (2005).

    Article  CAS  Google Scholar 

  22. Paruchuri, S. et al. Human pulmonary valve progenitor cells exhibit endothelial/mesenchymal plasticity in response to vascular endothelial growth factor-A and transforming growth factor-β2. Circ. Res. 99, 861–869 (2006).

    Article  CAS  Google Scholar 

  23. Ju, W. et al. Deletion of Smad2 in mouse liver reveals novel functions in hepatocyte growth and differentiation. Mol. Cell. Biol. 26, 654–67 (2006).

    Article  CAS  Google Scholar 

  24. Roberts, A. B. et al. Smad3 is key to TGF-β-mediated epithelial-to-mesenchymal transition, fibrosis, tumor suppression and metastasis. Cytokine Growth Factor Rev. 17, 19–27 (2006).

    Article  CAS  Google Scholar 

  25. Janda, E. et al. Ras and TGF-β cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J. Cell Biol. 156, 299–313 (2002).

    Article  CAS  Google Scholar 

  26. Kane, C. L., Keehn, C. A., Smithberger, E. & Glass, L. F. Histopathology of cutaneous squamous cell carcinoma and its variants. Semin. Cutan. Med. Surg. 23, 54–61 (2004).

    Article  Google Scholar 

  27. Dandachi, N. et al. Co-expression of tenascin-C and vimentin in human breast cancer cells indicates phenotypic transdifferentiation during tumour progression: correlation with histopathological parameters, hormone receptors, and oncoproteins. J. Pathol. 193, 181–189 (2001).

    Article  CAS  Google Scholar 

  28. Aker, F. V., Bas, Y., Ozkara, S. & Peker, O. Spindle cell metaplasia in follicular adenoma of the thyroid gland: case report and review of the literature. Endocr. J. 51, 457–461 (2004).

    Article  Google Scholar 

  29. Petersen, O. W. et al. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am. J. Pathol. 162, 391–402 (2003).

    Article  CAS  Google Scholar 

  30. Yang, J. et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 117, 927–939 (2004).

    Article  CAS  Google Scholar 

  31. Heldin, C.-H., Rubin, K., Pietras, K. & Ostman, A. High interstitial fluid pressure — an obstacle in cancer therapy. Nature Rev. Cancer 4, 806–813 (2004).

    Article  CAS  Google Scholar 

  32. Salnikov, A. V. et al. Inhibition of TGF-β modulates macrophages and vessel maturation in parallel to a lowering of interstitial fluid pressure in experimental carcinoma. Lab. Invest. 85, 512–521 (2005).

    Article  CAS  Google Scholar 

  33. Kano, M. R. et al. Improvement of cancer-targeting therapy, using nanocarriers for intractable solid tumors by inhibition of TGF-β signaling. Proc. Natl Acad. Sci. USA 104, 3460–3465 (2007).

    Article  CAS  Google Scholar 

  34. Derynck, R., Choy, L. & Alliston, T. Smads in mesenchymal differentiation. In Smad Signal Transduction (eds ten Dijke, P. & Heldin, C.-H.) 93–112 (2006). (Springer, The Netherlands)

    Chapter  Google Scholar 

  35. Hjelmeland, A. B., Schilling, S. H., Guo, X., Quarles, D. & Wang, X. F. Loss of Smad3-mediated negative regulation of Runx2 activity leads to an alteration in cell fate determination. Mol. Cell. Biol. 25, 9460–9468 (2005).

    Article  CAS  Google Scholar 

  36. Lee, S.-J. Regulation of muscle mass by myostatin. Annu. Rev. Cell Dev. Biol. 20, 61–86 (2004).

    Article  CAS  Google Scholar 

  37. Bellinge, R. H., Liberles, D. A., Iaschi, S. P., O'Brien, P. A. & Tay, G. K. Myostatin and its implications on animal breeding: a review. Anim. Genet. 36, 1–6 (2005).

    Article  CAS  Google Scholar 

  38. Schuelke, M. et al. Myostatin mutation associated with gross muscle hypertrophy in a child. N. Engl. J. Med. 350, 2682–2688 (2004).

    Article  CAS  Google Scholar 

  39. McCroskery, S., Thomas, M., Maxwell, L., Sharma, M. & Kambadur, R. Myostatin negatively regulates satellite cell activation and self-renewal. J. Cell Biol. 162, 1135–1147 (2003).

    Article  CAS  Google Scholar 

  40. Wagner, K. R., Liu, X., Chang, X. & Allen, R. E. Muscle regeneration in the prolonged absence of myostatin. Proc. Natl Acad. Sci. USA 102, 2519–2524 (2005).

    Article  CAS  Google Scholar 

  41. Carnac, G., Ricaud, S., Vernus, B. & Bonnieu, A. Myostatin: biology and clinical relevance. Mini Rev. Med. Chem. 6, 765–770 (2006).

    Article  CAS  Google Scholar 

  42. Katagiri, T. et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J. Cell Biol. 127, 1755–1766 (1994).

    Article  CAS  Google Scholar 

  43. Nakashima, K. et al. BMP2-mediated alteration in the developmental pathway of fetal mouse brain cells from neurogenesis to astrocytogenesis. Proc. Natl Acad. Sci. USA 98, 5868–5873 (2001).

    Article  CAS  Google Scholar 

  44. Chen, D., Zhao, M. & Mundy, G. R. Bone morphogenetic proteins. Growth Factors. 22, 233–241 (2004).

    Article  CAS  Google Scholar 

  45. Shafritz, A. B. et al. Overexpression of an osteogenic morphogen in fibrodysplasia ossificans progressiva. N. Engl. J. Med. 335, 555–561 (1996).

    Article  CAS  Google Scholar 

  46. Shore, E. M. et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nature Genet. 38, 525–527 (2006).

    Article  CAS  Google Scholar 

  47. Skillington, J., Choy, L. & Derynck, R. Bone morphogenetic protein and retinoic acid signaling cooperate to induce osteoblast differentiation of preadipocytes. J. Cell Biol. 159, 135–146 (2002).

    Article  CAS  Google Scholar 

  48. Wan, D. C. et al. Osteogenic differentiation of mouse adipose-derived adult stromal cells requires retinoic acid and bone morphogenetic protein receptor type IB signaling. Proc. Natl Acad. Sci. USA 103, 12335–12340 (2006).

    Article  CAS  Google Scholar 

  49. Xu, Y., Malladi, P., Wagner, D. R. & Longaker, M. T. Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Curr. Opin. Mol. Ther. 7, 300–305 (2005).

    PubMed  Google Scholar 

  50. Cowan, C. M. et al. Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nature Biotechnol. 22, 560–567 (2004).

    Article  CAS  Google Scholar 

  51. Lendeckel, S. et al. Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J. Craniomaxillofac. Surg. 32, 370–373 (2004).

    Article  Google Scholar 

  52. Weston, A. D., Hoffman, L. M. & Underhill, T. M. Revisiting the role of retinoid signaling in skeletal development. Birth Defects Res. C Embryo Today 69, 156–173 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derynck, R., Akhurst, R. Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nat Cell Biol 9, 1000–1004 (2007). https://doi.org/10.1038/ncb434

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb434

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing