Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos

A Corrigendum to this article was published on 01 June 2002

Abstract

The gene strabismus (stbm)/Van Gogh (Vang) functions in the planar cell-polarity pathway in Drosophila. As the existence of such a pathway in vertebrates has not been firmly established, we investigated the functions and signalling activities encoded by stbm in vertebrate embryos. In regard to cell fate, inhibition of Stbm function in zebrafish embryos leads to reduction of anterior neural markers, whereas gain of function leads to a rise in the levels of these markers. In regard to cell behaviour, both gain-of-function and loss-of-function assays reveal a role for Stbm in mediating cell movements during gastrulation. Mechanistically, Stbm inhibits Wnt-mediated activation of β-catenin-dependent transcription while promoting phosphorylation of c-Jun- and AP-1-dependent transcription. This complex effect on intracellular signalling pathways probably involves dishevelled (dsh), as Stbm was found to interact with the Dsh protein, and as Dsh is known to function in both planar cell-polarity and β-catenin pathways in Drosophila.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment of Stbm reveals four potential transmembrane domains (TM1, TM2, TM3, TM4).
Figure 2: Temporal and spatial expression pattern of stbm in zebrafish and Xenopus.
Figure 3: stbm is required for neural gene expression.
Figure 4: stbm antagonizes the canonical Wnt/β-catenin pathway but activates JNK signaling.
Figure 5: Stbm modulates convergent extension movements through its C-terminal domain.
Figure 6: Stbm binds Dsh and changes its subcellular localization.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fanto, M., Mayes, C. A. & Mlodzik, M. Linking cell-fate specification to planar polarity: determination of the R3/R4 photoreceptors is a prerequisite for the interpretation of the Frizzled mediated polarity signal. Mech. Dev. 74, 51–58 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Gubb, D. & Garcia-Bellido, A. A genetic analysis of the determination of cuticular polarity during development in Drosophila melanogaster. J. Embryol. Exp. Morph. 68, 37–57 (1982).

    CAS  PubMed  Google Scholar 

  3. Wong, L. L. & Adler, P. N. Tissue polarity genes of Drosophila regulate the subcellular location for prehair initiation in pupal wing cells. J. Cell Biol. 123, 209–221 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Park, W. J., Liu, J. & Adler, P. N. The frizzled gene of Drosophila encodes a membrane protein with an odd number of transmembrane domains. Mech. Dev. 45, 127–137 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Tomlinson, A., Strapps, W. R. & Heemskerk, J. Linking Frizzled and Wnt signaling in Drosophila development. Development 124, 4515–4521 (1997).

    CAS  PubMed  Google Scholar 

  6. Vinson, C. R., Conover, S. & Adler, P. N. A Drosophila tissue polarity locus encodes a protein containing seven potential transmembrane domains. Nature 338, 263–264 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Krasnow, R. E., Wong, L. L. & Adler, P. N. Dishevelled is a component of the frizzled signaling pathway in Drosophila. Development 121, 4095–4102 (1995).

    CAS  PubMed  Google Scholar 

  8. Li, L. et al. Dishevelled proteins lead to two signaling pathways. Regulation of LEF-1 and c-Jun N-terminal kinase in mammalian cells. J. Biol. Chem. 274, 129–134 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Adler, P. N., Taylor, J. & Charlton, J. The domineering non-autonomy of frizzled and van Gogh clones in the Drosophila wing is a consequence of a disruption in local signaling. Mech. Dev. 96, 197–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Wolff, T. & Rubin, G. M. Strabismus, a novel gene that regulates tissue polarity and cell fate decisions in Drosophila. Development 125, 1149–1159 (1998).

    CAS  PubMed  Google Scholar 

  11. Taylor, J., Abramova, N., Charlton, J. & Adler, P. N. Van Gogh: a new Drosophila tissue polarity gene. Genetics 150, 199–210 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Noselli, S. & Agnes, F. Roles of the JNK signaling pathway in Drosophila morphogenesis. Curr Opin Genet Dev 9, 466–472 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Strutt, D. I., Weber, U. & Mlodzik, M. The role of RhoA in tissue polarity and Frizzled signalling. Nature 387, 292–295 (1997).

    Article  CAS  PubMed  Google Scholar 

  14. Weber, U., Paricio, N. & Mlodzik, M. Jun mediates Frizzled-induced R3/R4 cell fate distinction and planar polarity determination in the Drosophila eye. Development 127, 3619–3629 (2000).

    CAS  PubMed  Google Scholar 

  15. Kibar, Z. et al. Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail. Nature Genet. 28, 251–255 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Kuhl, M., Sheldahl, L. C., Malbon, C. C. & Moon, R. T. Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. J. Biol. Chem. 275, 12701–12711 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Slusarski, D. C., Yang-Snyder, J., Busa, W. B. & Moon, R. T. Modulation of embryonic intracellular Ca2+ signaling by Wnt-5A. Dev. Biol. 182, 114–120 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Sheldahl, L. C., Park, M., Malbon, C. C. & Moon, R. T. Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Curr. Biol. 9, 695–658 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Kuhl, M., Sheldahl, L. C., Park, M., Miller, J. R. & Moon, R. T. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 16, 279–283 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Moon, R. T. et al. Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis. Development 119, 97–111 (1993).

    CAS  PubMed  Google Scholar 

  21. Heisenberg, C. P. et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Wallingford, J. B. et al. Dishevelled controls cell polarity during Xenopus gastrulation. Nature 405, 81–85 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Tada, M. & Smith, J. C. Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway. Development 127, 2227–2238 (2000).

    CAS  PubMed  Google Scholar 

  24. Songyang, Z. et al. Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275, 73–77 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nature Genet. 26, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. McGrew, L. L., Lai, C. J. & Moon, R. T. Specification of the anteroposterior neural axis through synergistic interaction of the Wnt signaling cascade with noggin and follistatin. Dev. Biol. 172, 337–342 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. McGrew, L. L., Hoppler, S. & Moon, R. T. Wnt and FGF pathways cooperatively pattern anteroposterior neural ectoderm in Xenopus. Mech. Dev. 69, 105–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Lekven, A. C., Thorpe, C. J., Waxman, J. S. & Moon, R. T. Zebrafish wnt8 encodes two Wnt8 proteins on a bicistronic transcript and is required for mesoderm and neuroectoderm patterning. Dev. Cell. 1 103–114 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Korinek, V. et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275, 1784–1787 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Takemaru, K. I. & Moon, R. T. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J. Cell Biol. 149, 249–254 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McKay, R. M., Peters, J. M. & Graff, J. M. The casein kinase I family in Wnt signaling. Dev. Biol. 235, 388–396 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Yan, D. et al. Cell autonomous regulation of multiple Dishevelled-dependent pathways by mammalian Nkd. Proc. Natl Acad. Sci. USA 98, 3802–3807 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zeng, W. et al. naked cuticle encodes an inducible antagonist of Wnt signalling. Nature 403, 789–795 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Rousset, R. et al. Naked cuticle targets dishevelled to antagonize Wnt signal transduction. Genes Dev. 15, 658–671 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wharton, K. A., Jr, Zimmermann, G., Rousset, R. & Scott, M. P. Vertebrate proteins related to Drosophila Naked Cuticle bind Dishevelled and antagonize Wnt signaling. Dev. Biol. 234, 93–106 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kieser, A. et al. Epstein-Barr virus latent membrane protein-1 triggers AP-1 activity via the c-Jun N-terminal kinase cascade. EMBO J. 16, 6478–6485 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sabapathy, K. et al. Defective neural tube morphogenesis and altered apoptosis in the absence of both JNK1 and JNK2. Mech. Dev. 89, 115–124 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Kuan, C. Y. et al. The Jnk1 and Jnk2 protein kinases are required for regional specific apoptosis during early brain development. Neuron 22, 667–676 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Sepich, D. S. et al. Role of the zebrafish trilobite locus in gastrulation movements of convergence and extension. Genesis 27, 159–173 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Henry, C. A., Hall, L. A., Burr Hille, M., Solnica-Krezel, L. & Cooper, M. S. Somites in zebrafish doubly mutant for knypek and trilobite form without internal mesenchymal cells or compaction. Curr. Biol. 10, 1063–1066 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Keller, R. E., Danilchik, M., Gimlich, R. & Shih, J. The function and mechanism of convergent extension during gastrulation of Xenopus laevis. J. Embryol. Exp. Morph. 89 Suppl, 185–209 (1985).

    PubMed  Google Scholar 

  42. Boutros, M. & Mlodzik, M. Dishevelled: at the crossroads of divergent intracellular signaling pathways. Mech. Dev. 83, 27–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Moriguchi, T. et al. Distinct domains of mouse dishevelled are responsible for the c-Jun N- terminal kinase/stress-activated protein kinase activation and the axis formation in vertebrates. J. Biol. Chem. 274, 30957–30962 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Axelrod, J. D., Miller, J. R., Shulman, J. M., Moon, R. T. & Perrimon, N. Differential recruitment of Dishevelled provides signaling specificity in the planar cell polarity and Wingless signaling pathways. Genes Dev .12, 2610–2622 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Axelrod, J. D. Unipolar membrane association of Dishevelled mediates Frizzled planar cell polarity signaling. Genes Dev. 15, 1182–1187 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Miller, J. R. et al. Establishment of the dorsal-ventral axis in Xenopus embryos coincides with the dorsal enrichment of dishevelled that is dependent on cortical rotation. J. Cell Biol. 146, 427–437 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Itoh, K. & Sokol, S. Y. Graded amounts of Xenopus dishevelled specify discrete anteroposterior cell fates in prospective ectoderm. Mech. Dev. 61, 113–125 (1997).

    Article  CAS  PubMed  Google Scholar 

  48. Harland, R. M. In situ hybridization: an improved whole mount method for Xenopus embryos Methods Cell Biol. 36, 685–695 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Kimelman and T. Lepage for the zebrafish library, R. Harland for the Xenopus library, C. Moen for the Hox probe, J. Miller for Dsh constructs and M. Veeman, K. Takemaru, A. Kaykas, and C. Thorpe for review of the manuscript. M.P. is an associate and R.T.M. an Investigator of the HHMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall T. Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, M., Moon, R. The planar cell-polarity gene stbm regulates cell behaviour and cell fate in vertebrate embryos. Nat Cell Biol 4, 20–25 (2002). https://doi.org/10.1038/ncb716

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb716

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing