Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lgr5 marks cycling, yet long-lived, hair follicle stem cells

Abstract

In mouse hair follicles, a group of quiescent cells in the bulge is believed to have stem cell activity. Lgr5, a marker of intestinal stem cells, is expressed in actively cycling cells in the bulge and secondary germ of telogen hair follicles and in the lower outer root sheath of anagen hair follicles. Here we show that Lgr5+ cells comprise an actively proliferating and multipotent stem cell population able to give rise to new hair follicles and maintain all cell lineages of the hair follicle over long periods of time. Lgr5+ progeny repopulate other stem cell compartments in the hair follicle, supporting the existence of a stem or progenitor cell hierarchy. By marking Lgr5+ cells during trafficking through the lower outer root sheath, we show that these cells retain stem cell properties and contribute to hair follicle growth during the next anagen. Expression analysis suggests involvement of autocrine Hedgehog signaling in maintaining the Lgr5+ stem cell population.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lgr5 is expressed in basal cells of the bulge area and the ORS of the mouse hair follicle.
Figure 2: Lgr5+ cells are the primary proliferating cells at the onset of anagen and are distinct from LRCs.
Figure 3: The Lgr5+ cell population contains functional hair follicle stem cells.
Figure 4: The progeny of Lgr5+ cells contribute to all structures in hair follicles and maintain hair follicles over extended time periods.
Figure 5: Progeny of the Lgr5+ cells repopulate the permanent part, the bulge and the secondary germ of the hair follicle.
Figure 6: Lgr5+ cells show a pattern of stem cell gene expression, including markers of active Hh signaling.
Figure 7: Proposed model showing migration and repopulation of the hair follicle by Lgr5-expressing stem cells and their progeny.

Similar content being viewed by others

References

  1. Alonso, L. & Fuchs, E. The hair cycle. J. Cell Sci. 119, 391–393 (2006).

    Article  CAS  Google Scholar 

  2. Cotsarelis, G., Sun, T.T. & Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61, 1329–1337 (1990).

    Article  CAS  Google Scholar 

  3. Blanpain, C., Lowry, W.E., Geoghegan, A., Polak, L. & Fuchs, E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118, 635–648 (2004).

    Article  CAS  Google Scholar 

  4. Trempus, C.S. et al. Enrichment for living murine keratinocytes from the hair follicle bulge with the cell surface marker CD34. J. Invest. Dermatol. 120, 501–511 (2003).

    CAS  PubMed  Google Scholar 

  5. Morris, R.J. et al. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417 (2004).

    Article  CAS  Google Scholar 

  6. Braun, K.M. et al. Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in wholemounts of mouse epidermis. Development 130, 5241–5255 (2003).

    Article  CAS  Google Scholar 

  7. Tumbar, T. et al. Defining the epithelial stem cell niche in skin. Science 303, 359–363 (2004).

    Article  CAS  Google Scholar 

  8. Ito, M., Kizawa, K., Hamada, K. & Cotsarelis, G. Hair follicle stem cells in the lower bulge form the secondary germ, a biochemically distinct but functionally equivalent progenitor cell population, at the termination of catagen. Differentiation 72, 548–557 (2004).

    Article  Google Scholar 

  9. Nijhof, J.G. et al. The cell-surface marker MTS24 identifies a novel population of follicular keratinocytes with characteristics of progenitor cells. Development 133, 3027–3037 (2006).

    Article  CAS  Google Scholar 

  10. Oshima, H., Rochat, A., Kedzia, C., Kobayashi, K. & Barrandon, Y. Morphogenesis and renewal of hair follicles from adult multipotent stem cells. Cell 104, 233–245 (2001).

    Article  CAS  Google Scholar 

  11. Barker, N. et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003–1007 (2007).

    Article  CAS  Google Scholar 

  12. Hsu, S.Y., Liang, S.G. & Hsueh, A.J. Characterization of two LGR genes homologous to gonadotropin and thyrotropin receptors with extracellular leucine-rich repeats and a G protein-coupled, seven-transmembrane region. Mol. Endocrinol. 12, 1830–1845 (1998).

    Article  CAS  Google Scholar 

  13. Van der Flier, L.G. et al. The intestinal Wnt/TCF signature. Gastroenterology 132, 628–632 (2007).

    Article  CAS  Google Scholar 

  14. van de Wetering, M. et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111, 241–250 (2002).

    Article  CAS  Google Scholar 

  15. Reya, T. & Clevers, H. Wnt signalling in stem cells and cancer. Nature 434, 843–850 (2005).

    Article  CAS  Google Scholar 

  16. Trempus, C.S. et al. Comprehensive microarray transcriptome profiling of CD34-enriched mouse keratinocyte stem cells. J. Invest. Dermatol. 127, 2904–2907 (2007).

    Article  CAS  Google Scholar 

  17. Fiering, S.N. et al. Improved FACS-Gal: flow cytometric analysis and sorting of viable eukaryotic cells expressing reporter gene constructs. Cytometry 12, 291–301 (1991).

    Article  CAS  Google Scholar 

  18. Depreter, M.G. et al. Identification of Plet-1 as a specific marker of early thymic epithelial progenitor cells. Proc. Natl. Acad. Sci. USA 105, 961–966 (2008).

    Article  CAS  Google Scholar 

  19. Albert, M.R., Foster, R.A. & Vogel, J.C. Murine epidermal label-retaining cells isolated by flow cytometry do not express the stem cell markers CD34, Sca-1, or Flk-1. J. Invest. Dermatol. 117, 943–948 (2001).

    Article  CAS  Google Scholar 

  20. Jensen, U.B. et al. A distinct population of clonogenic and multipotent murine follicular keratinocytes residing in the upper isthmus. J. Cell Sci. 121, 609–617 (2008).

    Article  CAS  Google Scholar 

  21. Triel, C., Vestergaard, M.E., Bolund, L., Jensen, T.G. & Jensen, U.B. Side population cells in human and mouse epidermis lack stem cell characteristics. Exp. Cell Res. 295, 79–90 (2004).

    Article  CAS  Google Scholar 

  22. Fuchs, E. Skin stem cells: rising to the surface. J. Cell Biol. 180, 273–284 (2008).

    Article  CAS  Google Scholar 

  23. Nilsson, M. et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc. Natl. Acad. Sci. USA 97, 3438–3443 (2000).

    Article  CAS  Google Scholar 

  24. St-Jacques, B. et al. Sonic hedgehog signaling is essential for hair development. Curr. Biol. 8, 1058–1068 (1998).

    Article  CAS  Google Scholar 

  25. Chiang, C. et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol. 205, 1–9 (1999).

    Article  CAS  Google Scholar 

  26. Lee, J., Platt, K.A., Censullo, P. & Ruiz i Altaba, A. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 124, 2537–2552 (1997).

    CAS  PubMed  Google Scholar 

  27. Taylor, G., Lehrer, M.S., Jensen, P.J., Sun, T.T. & Lavker, R.M. Involvement of follicular stem cells in forming not only the follicle but also the epidermis. Cell 102, 451–461 (2000).

    Article  CAS  Google Scholar 

  28. Waghmare, S.K. et al. Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. EMBO J. 27, 1309–1320 (2008).

    Article  CAS  Google Scholar 

  29. Kobielak, K., Stokes, N., de la Cruz, J., Polak, L. & Fuchs, E. Loss of a quiescent niche but not follicle stem cells in the absence of bone morphogenetic protein signaling. Proc. Natl. Acad. Sci. USA 104, 10063–10068 (2007).

    Article  CAS  Google Scholar 

  30. Leung, C.T., Coulombe, P.A. & Reed, R.R. Contribution of olfactory neural stem cells to tissue maintenance and regeneration. Nat. Neurosci. 10, 720–726 (2007).

    Article  CAS  Google Scholar 

  31. Dry, F.W. The coat of the mouse (Mus musculus). J. Genet. 16, 278–330 (1925).

    Google Scholar 

  32. Chase, H.B., Rauch, R. & Smith, V.W. Critical stages of hair development and pigmentation in the mouse. Physiol. Zool. 24, 1–8 (1951).

    Article  CAS  Google Scholar 

  33. Ying, Q.L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008).

    Article  CAS  Google Scholar 

  34. Kopan, R. et al. Genetic mosaic analysis indicates that the bulb region of coat hair follicles contains a resident population of several active multipotent epithelial lineage progenitors. Dev. Biol. 242, 44–57 (2002).

    Article  CAS  Google Scholar 

  35. Wu, W.Y. & Morris, R.J. Method for the harvest and assay of in vitro clonogenic keratinocytes stem cells from mice. Methods Mol. Biol. 289, 79–86 (2005).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Roop and W. Buitrago for help with setting up the keratinocyte transplantation assay; Å.-L. Dackland for help with cell sorting; Å. Bergström and I. Sur for contributions during work with animals and preparation of samples; and M. van den Born, M. Cozijnsen and H. Begthel for help with histological procedures. This work was supported by the Swedish Cancer Society (to R.T.), the Swedish Research Council (to R.T.), the National Institutes of Health (AR47898 and U01CA105491 to R.T.), Genmab BV (to H.C.), Koninklijke Nederlandse Akademie van Wetenschappen (to H.C.), Koningin Wilhelmina Fonds (to H.C.), the Louis Jeantet Foundation (to H.C.), an International Agency for Research on Cancer Research Training Fellowship (to V.J.), a Marie-Curie Intra-European Fellowship (to V.J.) and a fellowship from the Wenner-Gren Foundation (M.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Clevers or Rune Toftgård.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–3 (PDF 3915 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaks, V., Barker, N., Kasper, M. et al. Lgr5 marks cycling, yet long-lived, hair follicle stem cells. Nat Genet 40, 1291–1299 (2008). https://doi.org/10.1038/ng.239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing