Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of seven loci affecting mean telomere length and their association with disease

Abstract

Interindividual variation in mean leukocyte telomere length (LTL) is associated with cancer and several age-associated diseases. We report here a genome-wide meta-analysis of 37,684 individuals with replication of selected variants in an additional 10,739 individuals. We identified seven loci, including five new loci, associated with mean LTL (P < 5 × 10−8). Five of the loci contain candidate genes (TERC, TERT, NAF1, OBFC1 and RTEL1) that are known to be involved in telomere biology. Lead SNPs at two loci (TERC and TERT) associate with several cancers and other diseases, including idiopathic pulmonary fibrosis. Moreover, a genetic risk score analysis combining lead variants at all 7 loci in 22,233 coronary artery disease cases and 64,762 controls showed an association of the alleles associated with shorter LTL with increased risk of coronary artery disease (21% (95% confidence interval, 5–35%) per standard deviation in LTL, P = 0.014). Our findings support a causal role of telomere-length variation in some age-related diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Signal-intensity plot of genotype association with telomere length.
Figure 2: Regional association plots for the associated loci.
Figure 3: Telomere length variants and risk of CAD.

Similar content being viewed by others

References

  1. Blackburn, E.H., Greider, C.W. & Szostak, J.W. Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nat. Med. 12, 1133–1138 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Allsopp, R.C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89, 10114–10118 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, C. & Meier, U.T. Architecture and assembly of mammalian H/ACA small nucleolar and telomerase ribonucleoproteins. EMBO J. 23, 1857–1867 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ma, H. et al. Shortened telomere length is associated with increased risk of cancer: a meta-analysis. PLoS ONE 6, e20466 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wentzensen, I.M., Mirabello, L., Pfeiffer, R.M. & Savage, S.A. The association of telomere length and cancer; a meta-analysis. Cancer Epidemiol. Biomarkers Prev. 20, 1238–1250 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chang, S., Khoo, C.M., Naylor, M.L., Maser, R.S. & DePinho, R.A. Telomere-based crisis: functional differences between telomerase activation and ALT in tumour progression. Genes Dev. 17, 88–100 (2002).

    Article  Google Scholar 

  7. Slagboom, P.E., Droog, S. & Boomsma, D.I. Genetic determination of telomere size in humans: a twin study of three age groups. Am. J. Hum. Genet. 55, 876–882 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Njajou, O.T. et al. Telomere length is paternally inherited and is associated with parental lifespan. Proc. Natl. Acad. Sci. USA 104, 12135–12139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vasa Nicotera, M. et al. Mapping of a major locus that determines telomere length in humans. Am. J. Hum. Genet. 76, 147–151 (2005).

    Article  CAS  PubMed  Google Scholar 

  10. Wilson, W.R. et al. Blood leukocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur. Heart J. 29, 2689–2694 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Okuda, K. et al. Telomere length in the newborn. Pediatr. Res. 52, 377–381 (2002).

    Article  PubMed  Google Scholar 

  12. Brouilette, S., Singh, R.K., Thompson, J.R., Goodall, A.H. & Samani, N.J. White cell telomere length and risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 23, 842–846 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Brouilette, S. et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Heart 94, 422–425 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Fitzpatrick, A.L. et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am. J. Epidemiol. 165, 14–21 (2007).

    Article  PubMed  Google Scholar 

  15. Benetos, A. et al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension 43, 182–185 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Samani, N.J. & van der Harst, P. Biological ageing and cardiovascular disease. Heart 94, 537–539 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Codd, V. et al. Common variants near TERC are associated with mean telomere length. Nat. Genet. 42, 197–199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Levy, D. et al. Genome-wide association identifies OBFC1 as a locus involved in human leukocyte telomere biology. Proc. Natl. Acad. Sci. USA 107, 9293–9298 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones, A.M. et al. Terc polymorphisms are associated both with susceptibility to colorectal cancer and with longer telomeres. Gut 61, 248–254 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Egan, E.D. & Collins, K. An enhanced H/ACA RNP assembly mechanism for human telomerase RNA. Mol. Cell. Biol. 32, 2428–2439 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Miyake, Y. et al. RPA-like mammalian Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects telomeres independently of the Pot1 pathway. Mol. Cell 36, 193–206 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Ding, H. et al. Regulation of murine telomere length by Rtel1: an essential gene encoding a helicase-like protein. Cell 117, 873–886 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Barber, L.J. et al. RTEL1 maintains genomic stability by suppressing homologous recombination. Cell 135, 261–271 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim, J.W., Kwon, O.Y. & Kim, M.H. Differentially expressed genes and morphological changes during lengthened immobilization in rat soleus muscle. Differentiation 75, 147–157 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Farzaneh-Far, R. et al. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS ONE 5, e8612 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alder, J.K. et al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl. Acad. Sci. USA 105, 13051–13056 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richter, T. & von Zglinicki, T. Continuous correlation between oxidative stress and telomere length shortening in fibroblasts. Exp. Gerontol. 41, 1039–1042 (2007).

    Article  Google Scholar 

  28. Valdes, A.M. et al. Obesity, cigarette smoking, and telomere length in women. Lancet 366, 662–664 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Bekaert, S. et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 6, 639–647 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Schunkert, H. et al. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43, 333–338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. International Consortium for Blood Pressure Genome-Wide Association Studies. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478, 103–109 (2011).

  32. Lin, J., Epel, E. & Blackburn, E. Telomeres and lifestyle factors: roles in cellular aging. Mutat. Res. 730, 85–89 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Farzaneh-Far, R. et al. Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. J. Am. Med. Assoc. 303, 250–257 (2010).

    Article  CAS  Google Scholar 

  34. Epel, E.S. et al. Accelerated telomere shortening in response to life stress. Proc. Natl. Acad. Sci. USA 101, 17312–17315 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Minamino, T. et al. Endothelial cell senescence inhuman atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105, 1541–1544 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Oh, H. et al. Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc. Natl. Acad. Sci. USA 98, 10308–10313 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wong, K.K. et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature 421, 643–648 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Samper, E., Flores, J.M. & Blasco, M.A. Restoration of telomerase activity rescues chromosomal instability and premature aging in Terc−/− mice with short telomeres. EMBO Rep. 2, 800–807 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jaskelioff, M. et al. Telomerase reactivation reverses tissue degeneration in aged telomerase deficient mice. Nature 469, 102–106 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, e47 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cawthon, R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 37, e21 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Higgins, J.P. et al. Measuring inconsistency in meta-analyses. Br. Med. J. 327, 557–560 (2003).

    Article  Google Scholar 

  43. Willer, C.J. et al. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

    Article  PubMed  Google Scholar 

  45. Salpea, K.D. et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis 209, 42–50 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pruim, R.J. et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26, 2336–2337 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heid, I.M. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Purcell, S., Cherny, S.S. & Sham, P.C. Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003).

    CAS  PubMed  Google Scholar 

  49. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kumar, P., Henikoff, S. & Ng, P.C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    Article  CAS  PubMed  Google Scholar 

  51. Zeller, T. et al. Genetics and beyond—the transcriptome of human monocytes and disease susceptibility. PLoS ONE 5, e10693 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rosenbloom, K.R. et al. ENCODE whole-genome data in the UCSC Genome Browser: update 2012. Nucleic Acids Res. 40, d912–d917 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was undertaken under the framework of European Union Framework 7 ENGAGE Project (HEALTH-F4-2007-201413). A full list of acknowledgments, including support for each study, is provided in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

V.C. and N.J.S. supervised the overall study. V.C., M.M., T.D.S., P.v.d.H. and N.J.S. designed the study. M.M., T.E., D.R.N., R.A.d.B., G.D.N., D.S., N.A., A.J.B., P.S.B., P.R.B., K.D., M.D., J.G.E., K.G., A.-L.H., A.K.H., L.C. Karssen, J.K., N.K., V.L., I.M.L., E.M.v.L., P.A.M., R.M., P.K.E.M., S.M., M.I.M., S.E.M., E.M., G.W.M., B.A.O., J.P., A. Palotie, A. Peters, Anneli Pouta, I.P., S.R.,V.S., A.M.V., N.V., A.V., H.-E.W., E.W., G.W., M.J.W., K.X., X.X., D.J.v.V., A.L.C., M.D.T., A.S.H., A.I.F.B., P.J.T., N.L.P., M.P., J.D., W.O., J. Kaprio, N.G.M., C.M.v.D., C.G., A.M., D.I.B., M.-R.J., W.H.v.G., P.E.S., T.D.S., P.v.d.H. and N.J.S. contributed to recruitment, study and data management, genotyping and/or imputation of individual studies. V.C., J.L.B., M.K.M., R.A.d.B., J.P., E.D., L.K., H.P., P.T.J. and I.H. measured telomere length. C.P.N., E.A., M.M., J.D., J.L.B., J.J.H., K.F., T.E., I.S., L.B., D.R.N., R.A.d.B., P.S., S.H., G.D.N., P.F.O., I.M.L., S.E.M. and P.v.d.H. undertook association analysis of individual studies; C.P.N., E.A. and J.R.T. carried out the meta-analysis and the additional reported analyses. H.Z., X.W., D.G. and Y.D. provided data on telomerase activity and genotypes. J.E., M.P.R., S.K. and H.S. contributed CAD association data on behalf of CARDIoGRAM. V.C. and N.J.S. prepared the paper together with C.P.N., E.A., M.M. and P.v.d.H. and all authors reviewed the paper.

Corresponding author

Correspondence to Nilesh J Samani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of members is provided in the Supplementary Note.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1–8, Supplementary Note (PDF 1515 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Codd, V., Nelson, C., Albrecht, E. et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet 45, 422–427 (2013). https://doi.org/10.1038/ng.2528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.2528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing