Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer

Abstract

We conducted a two-stage genome-wide association study of pancreatic cancer, a cancer with one of the lowest survival rates worldwide. We genotyped 558,542 SNPs in 1,896 individuals with pancreatic cancer and 1,939 controls drawn from 12 prospective cohorts plus one hospital-based case-control study. We conducted a combined analysis of these groups plus an additional 2,457 affected individuals and 2,654 controls from eight case-control studies, adjusting for study, sex, ancestry and five principal components. We identified an association between a locus on 9q34 and pancreatic cancer marked by the SNP rs505922 (combined P = 5.37 × 10−8; multiplicative per-allele odds ratio 1.20; 95% confidence interval 1.12–1.28). This SNP maps to the first intron of the ABO blood group gene. Our results are consistent with earlier epidemiologic evidence suggesting that people with blood group O may have a lower risk of pancreatic cancer than those with groups A or B.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plot of the P values in the pancreatic cancer GWAS.
Figure 2: Association and linkage disequilibrium plot of the 9q34 locus.

References

  1. Jemal, A. et al. Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96 (2008).

    Article  PubMed  Google Scholar 

  2. Ferlay, J., Bray, F., Pisani, P. & Parkin, D.M. GLOBOCAN 2002: Cancer Incidence, Mortality and Prevalence Worldwide. IARC CancerBase No. 5, IARCPress, Lyon (2004).

  3. Anderson, K.E., Mack, T. & Silverman, D. Cancer of the pancreas. in Cancer Epidemiology and Prevention (ed. Schottenfeld, D. & Fraumeni, J.J.) (Oxford Univ. Press, New York, 2006).

    Google Scholar 

  4. Lowenfels, A.B. et al. Hereditary pancreatitis and the risk of pancreatic cancer. International Hereditary Pancreatitis Study Group. J. Natl. Cancer Inst. 89, 442–446 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Castleman, B. Case records of the Massachusetts General Hospital. N. Engl. J. Med. 286, 1353–1359 (1972).

    Article  Google Scholar 

  6. Klein, A.P. et al. Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Res. 64, 2634–2638 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Calle, E.E. et al. The American Cancer Society Cancer Prevention Study II Nutrition Cohort: rationale, study design, and baseline characteristics. Cancer 94, 2490–2501 (2002).

    Article  PubMed  Google Scholar 

  8. The ATBC Cancer Prevention Study Group. The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. Ann. Epidemiol. 4, 1–10 (1994).

  9. Riboli, E. et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 5, 1113–1124 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Gallicchio, L. et al. Single nucleotide polymorphisms in inflammation-related genes and mortality in a community-based cohort in Washington County, Maryland. Am. J. Epidemiol. 167, 807–813 (2008).

    Article  PubMed  Google Scholar 

  11. Wolpin, B.M. et al. Circulating insulin-like growth factor binding protein-1 and the risk of pancreatic cancer. Cancer Res. 67, 7923–7928 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Zeleniuch-Jacquotte, A. et al. Postmenopausal levels of sex hormones and risk of breast carcinoma in situ: results of a prospective study. Int. J. Cancer 114, 323–327 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Hayes, R.B. et al. Methods for etiologic and early marker investigations in the PLCO trial. Mutat. Res. 592, 147–154 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Xu, W.H. et al. Joint effect of cigarette smoking and alcohol consumption on mortality. Prev. Med. 45, 313–319 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zheng, W. et al. The Shanghai Women's Health Study: rationale, study design, and baseline characteristics. Am. J. Epidemiol. 162, 1123–1131 (2005).

    Article  PubMed  Google Scholar 

  16. Anderson, G.L. et al. Implementation of the Women's Health Initiative study design. Ann. Epidemiol. 13, S5–S17 (2003).

    Article  PubMed  Google Scholar 

  17. Rexrode, K.M., Lee, I.M., Cook, N.R., Hennekens, C.H. & Buring, J.E. Baseline characteristics of participants in the Women's Health Study. J. Womens Health Gend. Based Med. 9, 19–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. McWilliams, R.R. et al. Polymorphisms in DNA repair genes, smoking, and pancreatic adenocarcinoma risk. Cancer Res. 68, 4928–4935 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eppel, A., Cotterchio, M. & Gallinger, S. Allergies are associated with reduced pancreas cancer risk: A population-based case-control study in Ontario, Canada. Int. J. Cancer 121, 2241–2245 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Duell, E.J. et al. Detecting pathway-based gene-gene and gene-environment interactions in pancreatic cancer. Cancer Epidemiol. Biomarkers Prev. 17, 1470–1479 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hassan, M.M. et al. Risk factors for pancreatic cancer: case-control study. Am. J. Gastroenterol. 102, 2696–2707 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Olson, S.H. et al. Allergies, variants in IL-4 and IL-4R alpha genes, and risk of pancreatic cancer. Cancer Detect. Prev. 31, 345–351 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Risch, H.A. Etiology of pancreatic cancer, with a hypothesis concerning the role of N-nitroso compounds and excess gastric acidity. J. Natl. Cancer Inst. 95, 948–960 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Skol, A.D., Scott, L.J., Abecasis, G.R. & Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat. Genet. 38, 209–213 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  26. Aird, I., Bentall, H.H. & Roberts, J.A. A relationship between cancer of stomach and the ABO blood groups. BMJ 1, 799–801 (1953).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marcus, D.M. The ABO and Lewis blood-group system. Immunochemistry, genetics and relation to human disease. N. Engl. J. Med. 280, 994–1006 (1969).

    Article  CAS  PubMed  Google Scholar 

  28. Melzer, D. et al. A genome-wide association study identifies protein quantitative trait loci (pQTLs). PLoS Genet. 4, e1000072 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Paré, G. et al. Novel association of ABO histo-blood group antigen with soluble ICAM-1: results of a genome-wide association study of 6,578 women. PLoS Genet. 4, e1000118 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yuan, X. et al. Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes. Am. J. Hum. Genet. 83, 520–528 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Itzkowitz, S.H. et al. Cancer-associated alterations of blood group antigen expression in the human pancreas. J. Natl. Cancer Inst. 79, 425–434 (1987).

    CAS  PubMed  Google Scholar 

  32. Berman, D.M. et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 425, 846–851 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Wolpin, B.M. et al. ABO blood group and the risk of pancreatic cancer. J. Natl. Cancer Inst. 101, 424–431 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wigginton, J.E., Cutler, D.J. & Abecasis, G.R. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 76, 887–893 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pritchard, J.K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Frazer, K.A. et al. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Thomas, G. et al. Multiple loci identified in a genome-wide association study of prostate cancer. Nat. Genet. 40, 310–315 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Hunter, D.J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu, K. et al. Population substructure and control selection in genome-wide association studies. PLoS One 3, e2551 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Patterson, N., Price, A.L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sun, L., Wilder, K. & McPeek, M.S. Enhanced pedigree error detection. Hum. Hered. 54, 99–110 (2002).

    Article  PubMed  Google Scholar 

  43. Lettre, G., Lange, C. & Hirschhorn, J.N. Genetic model testing and statistical power in population-based association studies of quantitative traits. Genet. Epidemiol. 31, 358–362 (2007).

    Article  PubMed  Google Scholar 

  44. Higgins, J.P. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the energy and contribution of our late colleague, Robert Welch. Additional acknowledgments are found in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Contributions

L.A., P.K., R.Z.S.-S., C.S.F., G.M.P., K.B.J., S.M.L., J.B.M., G.S.T., S.J.C., P.H. and R.N.H. organized and designed the study. L.A., A.H., K.B.J., G.T. and S.J.C. supervised genotyping of samples. L.A., P.K., R.Z.S.-S., C.S.F., K.B.J., C.K., K.Y., S.J.C., P.H. and R.N.H. contributed to the design and execution of statistical analysis. LA., S.J.C., P.H. and R.N.H. wrote the first draft of the manuscript. R.Z.S.-S., C.S.F., G.M.P., A.A.A., H.B.B.-d.-M., M.G., K.H., E.J.J., A.L., W.Z., D.A., W.B., C.D.B., F.B., S.B., J.E.B., P.M.B., F.C., F.C.-C., S.C., M.C., M.d.A., E.J.D., J.W.F., S.G., J.M.G., E.L.G., M.G., C.A.G., G.H., S.E.H., M.H., E.A.H., D.J.H., R.J., M.J., R.K., A.P.K., C.K., R.C.K., D.L., M.M., R.R.M., D.S.M., S.H.O., K.O., A.V.P., P.H.M.P., A.R., E.R., H.A.R., X.-O.S., D.T., S.K.V.D.E., J.V., J.W.-W., B.M.W., H.Y. and A.Z.-J. conducted the epidemiologic studies and contributed samples to the PanScan GWAS and/or replication. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Stephen J Chanock.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Tables 1–5 and Supplementary Note (PDF 401 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amundadottir, L., Kraft, P., Stolzenberg-Solomon, R. et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat Genet 41, 986–990 (2009). https://doi.org/10.1038/ng.429

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing