Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium

Abstract

The number and volume of cells in the blood affect a wide range of disorders including cancer and cardiovascular, metabolic, infectious and immune conditions. We consider here the genetic variation in eight clinically relevant hematological parameters, including hemoglobin levels, red and white blood cell counts and platelet counts and volume. We describe common variants within 22 genetic loci reproducibly associated with these hematological parameters in 13,943 samples from six European population-based studies, including 6 associated with red blood cell parameters, 15 associated with platelet parameters and 1 associated with total white blood cell count. We further identified a long-range haplotype at 12q24 associated with coronary artery disease and myocardial infarction in 9,479 cases and 10,527 controls. We show that this haplotype demonstrates extensive disease pleiotropy, as it contains known risk loci for type 1 diabetes, hypertension and celiac disease and has been spread by a selective sweep specific to European and geographically nearby populations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Manhattan plots describing the association of 2.11 M SNPs with eight hematological traits in the three discovery samples (UKBS-CC1, TwinsUK and KORA F3 500K).
Figure 3: Multimarker score tests for MPV and MCV.
Figure 4: Association of SNP rs11065987 with CAD.
Figure 5: Heat map of mRNA expression in the 12q24 region.
Figure 6: Overview of the 12q24 region.

Similar content being viewed by others

References

  1. Garner, C. et al. Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood 95, 342–346 (2000).

    CAS  PubMed  Google Scholar 

  2. Evans, D.M., Frazer, I.H. & Martin, N.G. Genetic and environmental causes of variation in basal levels of blood cells. Twin Res. 2, 250–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Ensrud, K. & Grimm, R.H. The white blood cell count and risk for coronary heart disease. Am. Heart J. 124, 207–213 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Danesh, J., Collins, R., Appleby, P. & Peto, R. Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies. J. Am. Med. Assoc. 279, 1477–1482 (1998).

    Article  CAS  Google Scholar 

  5. Hoffman, M., Blum, A., Baruch, R., Kaplan, E. & Benjamin, M. Leukocytes and coronary heart disease. Atherosclerosis 172, 1–6 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Boos, C.J. & Lip, G.Y.H. Assessment of mean platelet volume in coronary artery disease–—what does it mean? Thromb. Res. 120, 11–13 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Meisinger, C. et al. A genome-wide association study identifies three loci associated with mean platelet volume. Am. J. Hum. Genet. 84, 66–71 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Soranzo, N. A novel variant on chromosome 7Q22.3 associated with mean platelet volume, counts, and function. Blood 113, 3831–3837 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Silvestri, L. et al. The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell Metab. 8, 502–511 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wallace, D.F. & Subramaniam, V.N. Non-HFE haemochromatosis. World J. Gastroenterol. 13, 4690–4698 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elliott, S., Pham, E. & Macdougall, I.C. Erythropoietins: a common mechanism of action. Exp. Hematol. 36, 1573–1584 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Fukuda, M.N., Miyoshi, M. & Nadano, D. The role of bystin in embryo implantation and in ribosomal biogenesis. Cell. Mol. Life Sci. 65, 92–99 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Moffatt, M.F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Hollard, D., Berthier, R. & Douady, F. [Granulopoiesis and its regulation]. Sem. Hop. 51, 643–651 (1975).

    CAS  PubMed  Google Scholar 

  16. Kitajima, K., Kojima, M., Kondo, S. & Takeuchi, T. A role of jumonji gene in proliferation but not differentiation of megakaryocyte lineage cells. Exp. Hematol. 29, 507–514 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, L., Gorospe, J.R., Hoffman, E.P. & Rao, A.K. Decreased platelet expression of myosin regulatory light chain polypeptide (MYL9) and other genes with platelet dysfunction and CBFA2/RUNX1 mutation: insights from platelet expression profiling. J. Thromb. Haemost. 5, 146–154 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Bellizzi, D. et al. A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages. Genomics 85, 258–263 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Mason, K.D. et al. Programmed anuclear cell death delimits platelet life span. Cell 128, 1173–1186 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Wickrema, A. & Crispino, J.D. Erythroid and megakaryocytic transformation. Oncogene 26, 6803–6815 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Gudbjartsson, D.F. et al. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat. Genet. 41, 342–347 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  23. Todd, J.A. et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 39, 857–864 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hunt, K.A. et al. Newly identified genetic risk variants for celiac disease related to the immune response. Nat. Genet. 40, 395–402 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Voight, B.F., Kudaravalli, S., Wen, X. & Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 4, e72 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kudaravalli, S., Veyrieras, J.B., Stranger, B.E., Dermitzakis, E.T. & Pritchard, J.K. Gene expression levels are a target of recent natural selection in the human genome. Mol. Biol. Evol. 26, 649–658 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Fay, J.C. & Wu, C.I. Hitchhiking under positive Darwinian selection. Genetics 155, 1405–1413 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sabeti, P.C. et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 419, 832–837 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Xue, Y. et al. Adaptive evolution of UGT2B17 copy-number variation. Am. J. Hum. Genet. 83, 337–346 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Newton-Cheh, C. et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat. Genet. 41, 666–676 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takizawa, H. et al. Growth and maturation of megakaryocytes is regulated by Lnk/Sh2b3 adaptor protein through crosstalk between cytokine- and integrin-mediated signals. Exp. Hematol. 36, 897–906 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. Velazquez, L. et al. Cytokine signaling and hematopoietic homeostasis are disrupted in Lnk-deficient mice. J. Exp. Med. 195, 1599–1611 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blomberg, N., Baraldi, E., Nilges, M. & Saraste, M. The PH superfold: a structural scaffold for multiple functions. Trends Biochem. Sci. 24, 441–445 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Tartaglia, M. et al. Gain-of-function SOS1 mutations cause a distinctive form of Noonan syndrome. Nat. Genet. 39, 75–79 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Tartaglia, M. et al. Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 29, 465–468 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Hugues, L. et al. Mutations of PTPN11 are rare in adult myeloid malignancies. Haematologica 90, 853–854 (2005).

    PubMed  Google Scholar 

  37. Tartaglia, M. et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34, 148–150 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Merched, A.J. & Chan, L. Absence of p21Waf1/Cip1/Sdi1 modulates macrophage differentiation and inflammatory response and protects against atherosclerosis. Circulation 110, 3830–3841 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Ozaki, K. et al. SNPs in BRAP associated with risk of myocardial infarction in Asian populations. Nat. Genet. 41, 329–333 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Martin, J.F., Bath, P.M. & Burr, M.L. Influence of platelet size on outcome after myocardial infarction. Lancet 338, 1409–1411 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Huczek, Z. et al. Mean platelet volume on admission predicts impaired reperfusion and long-term mortality in acute myocardial infarction treated with primary percutaneous coronary intervention. J. Am. Coll. Cardiol. 46, 284–290 (2005).

    Article  PubMed  Google Scholar 

  42. Yang, A., Pizzulli, L. & Luderitz, B. Mean platelet volume as marker of restenosis after percutaneous transluminal coronary angioplasty in patients with stable and unstable angina pectoris. Thromb. Res. 117, 371–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Döring, A. et al. SLC2A9 influences uric acid concentrations with pronounced sex-specific effects. Nat. Genet. 40, 430–436 (2008).

    Article  PubMed  Google Scholar 

  44. Wichmann, H.E., Gieger, C. & Illig, T. KORA-gen–resource for population genetics, controls and a broad spectrum of disease phenotypes. Gesundheitswesen 67 Suppl 1, S26–S30 (2005.).

    Article  PubMed  Google Scholar 

  45. Richards, J.B. et al. Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet 371, 1505–1512 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, Y. & Abecasis, G.R. Mach 1.0: rapid haplotype reconstruction and missing genotype inference. Am. J. Hum. Genet. S79, 2290 (2006).

    Google Scholar 

  47. Marchini, J., Howie, B., Myers, S., McVean, G. & Donnelly, P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat. Genet. 39, 906–913 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Loos, R.J. et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat. Genet. 40, 768–775 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pe'er, I., Yelensky, R., Altshuler, D. & Daly, M.J. Estimation of the multiple testing burden for genomewide association studies of nearly all common variants. Genet. Epidemiol. 32, 381–385 (2008).

    Article  PubMed  Google Scholar 

  52. Sprugel, D.G. Correcting for bias in log-transformed allometric equations. Ecology 64, 209–210 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

The Wellcome Trust, EU (HEALTH-F2-2008-ENGAGE, QLG2-CT-2002-01254), National Institute for Health Research of England (NIHR) (TwinsUK); The Wellcome Trust (UKBS-CC1); Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany, the German Federal Ministry of Education and Research (BMBF), the German National Genome Research Network (NGFN), Munich Center of Health Sciences (MC Health) (KORA); Federal Ministry of Education and Research (grants no. 01ZZ9603, 01ZZ0103 and 01ZZ0403), Ministry of Cultural Affairs, Social Ministry of the Federal State of Mecklenburg-West Pomerania, Deutsche Forschungsgemeinschaft (grant SFB TR 19), the Federal Ministry of Education and Research (grant no. 03ZIK012); a joint grant from Siemens Healthcare, Erlangen, Germany and the Federal State of Mecklenburg-West Pomerania (SHIP); NIHR, CBMRC, NHSBT, (CBR); Deutsche Forschungsgemeinschaft, the German Federal Ministry of Education and Research (BMBF) (NGFN-2 and NGFN-plus), EU (LSHM-CT-2006-037593) (GerMIFS I and II); BHF and the UK MRC, the Wellcome Trust, Leicester NIHR Biomedical Research Unit in Cardiovascular Disease and EU-FP6 (LSHM-CT-2004-503485) (WTCCC-CAD); Cardiovascular Institute (University of Pennsylvania), GlaxoSmithKline, MedSTAR Research Institute (PennCATH/MedSTAR); US National Institutes of Health (NIH) and National Heart, Lung, and Blood Institute (STAMPEED), National Center for Research Resource (U54 RR020278) (MIGen); Canadian Institutes of Health Research (MOP82810, NA6650 and MOP77682), Canada Foundation for Innovation and Ontario Research Foundation (#11966) (OHGS); Finnish Foundation for Cardiovascular Research, Sigrid Juselius Foundation (COROGENE); Juvenile Diabetes Research Foundation/Wellcome Trust (T1D).

Author information

Authors and Affiliations

Authors

Contributions

Manuscript preparation: N.S., M.M., A.R., W.H.O., T.D.S., P.D., N.J.S. and C.G.

Main data analysis: N.S., C.G., B.K., A.R., A.T., R.A.L., Y.X. and C.T.-S. Intermediate trait analysis cohorts. Study design and biobanking: T.D.S. (TwinsUK), J.R.B., W.E., S.F.G., J.S.-C., J. Sambrook, N.A.W., W.H.O. (UKBS-CC1 and CBR), C.G., T.I., H.-E.W. (KORA F3 and F4), M.N., U.V. and H.V. (SHIP). Phenotype assessment: S.M., M.F., S.L.T., T.D.S. (TwinsUK), A.D., C.M. (KORA F3 and F4) and A.G. (SHIP). Genotyping: R.G., S.C.P., C.M.R., P.D. (TwinsUK), S.B., M.J.R.G., R.G., N.H., J. Stephens (CBR), H.P. and T.I. (KORA F3 and F4). Statistical analysis: N.S. (TwinsUK, CBR and UKBS-CC1), C.G, B.K. (KORA F3 and F4), A.T. (SHIP), A.R. and P.B. (Transcriptomics). CAD/MI cohorts. GerMIFS I and GerMIFS II: C.H., I.R.K., S.S., K.S., C.W., H.-E.W., C.W., J.E., H.S. WTCCC-CAD: N.J.S., A.H.G., A.S.H., B.W. and J.R.T. Ottawa Heart Study: L.C., R.M., R.R., G.A.W. and A.F.R.S. PennCATH/MedSTAR: M.L., M.S.B., J.D., S.E.E., H.H.H., D.J.R., M.P.R., V.M. and C.W.K. MIGEN: S.K., B.F.V., S.M.S., V.S., R.E., O.M., C.J.O., L.P., D.S.S. and D.A. COROGENE: M.P., P.S., V.S., L.P., I.S., J. Sinisalo and M.S.N. Celiac disease. D.A.v.H.

Corresponding author

Correspondence to Nicole Soranzo.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5, Supplementary Figures 1 and 2 and Supplementary Note. (PDF 6263 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soranzo, N., Spector, T., Mangino, M. et al. A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the HaemGen consortium. Nat Genet 41, 1182–1190 (2009). https://doi.org/10.1038/ng.467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing