Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice

Abstract

Integrins are heterodimeric transmembrane glyco-proteins which are engaged in a variety of cellular functions, such as adhesion, migration and differentiation1. The integrin α6β4 is expressed on squa-mous epithelia2, on subsets of endothelial cells3, immature thymocytes4 and on Schwann cells and fibroblasts in the peripheral nervous system5. In stratified epithelia, α6β4 is concentrated in specialised adhesion structures, called hemidesmosomes6,7, which are implicated in the stable attachment of the basal cells to the underlying basement membrane by connecting the intermediate filaments with the extracellular matrix8. The nature of the interactions between the various hemidesmosomal proteins, that lead to the formation of hemidesmosomes is poorly understood. To study the contribution of the integrin α6β4 in hemidesmosome formation and their anchoring properties, we inactivated the β4 gene in mice by targeted gene disruption. Homozygous β4 null mice died shortly after birth and displayed extensive detachment of the epidermis and other squamous epithelia. The dramatically reduced adhesive properties of the skin was accompanied by the absence of hemidesmosomes at the basal surface of keratinocytes. No evidence was found for impaired T-cell development, nor for defects in myelination in the peripheral nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hynes, R.O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25 (1992).

    Article  CAS  Google Scholar 

  2. Kajiji, S., Tamura, R.N. & Quaranta, V. A novel integrin (αEβ4) from human epithelial cells suggests a fourth family of integrin adhesion receptors. EMBO J. 8, 673–680 (1989).

    Article  CAS  Google Scholar 

  3. Kennel, S.J. et al. The β4 subunit of the integrin family is displayed on a restricted subset of endothelium in mice. J. Cell Sci. 103, 145–150 (1992).

    Google Scholar 

  4. Watt, S.M., Thomas, J.A., Edwards, A.J., Murdoch, S.J. & Horton, M.A. Adhesion receptors are differentially expressed on developing thymocytes and epithelium in human thymus. Exp. Hematol. 20, 1101–1111 (1992).

    CAS  PubMed  Google Scholar 

  5. Niessen, C.M. et al. Expression of the integrin a6b4 in peripheral nerves: localization in Schwann and perineural cells and different variants of the β4subunit. J. Cell Sci. 107, 543–552 (1994).

    CAS  Google Scholar 

  6. Stepp, M.A., Spurr, M.S., Tisdale, A., Elwell, J. & Gipson, I.K. α6β4 integrin heterodimer is a component of hemidesmosomes. Proc. Natl. Acad. Sci. USA 87, 8970–8974 (1990).

    Article  CAS  Google Scholar 

  7. Sonnenberg, A. et al. Integrin α6/β4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J. Cell Biol. 113, 907–917 (1991).

    Article  CAS  Google Scholar 

  8. Jones, J.C.R. et al. Hemidesmosomes: extracellular matrix/intermediate filament connectors. Exp. Cell Res. 213, 1–11 (1994).

    Article  CAS  Google Scholar 

  9. Carter, W.G., Ryan, M.C. & Gahr, P.J. Epiligrin, a new cell adhesion ligand for integrin αjJI in epithelial basement membranes. Cell 65, 599–610 (1991).

    Article  CAS  Google Scholar 

  10. Diaz, L.A. et al. Isolation of a human epidermal cDNA corresponding to the 180-kD autoantigen recognized by bullous pemphigoid and herpes gestationis sera. Immunolocalization of this protein to the hemidesmosome. J. Clin. Invest. 86, 1088–1094 (1990).

    Article  CAS  Google Scholar 

  11. Hopkinson, S.B., Riddelle, K.S. & Jones, J.C.R. Cytoplasmic domain of the 180-kD bullous pemphigoid antigen, a hemidesmosomal component: molecular and cell biologic characterization. J. Invest. Dermatol. 99, 264–270 (1992).

    Article  CAS  Google Scholar 

  12. Giudice, G.J., Squiquera, H.L., Elias, P.M. & Diaz, L.A. Identification of two collagen domains within the bullous pemphigoid autoantigen, BP180. J. Clin. Invest. 87, 734–738 (1991).

    Article  CAS  Google Scholar 

  13. Vidal, F. et al. Integrin β4 mutations associated with junctional epidermolysis bullosa with pyloric atresia. Nature Genet. 10, 229–234 (1995).

    Article  CAS  Google Scholar 

  14. Niessen, C.M. et al. Deficiency of the integrin β4 subunit in junctional epidermolysis bullosa with pyloric atresia: consequences for hemidesmosome formation and adhesion properties. J. Cell Sci. (in the press).

  15. Guo, L. et al. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81, 233–243 (1995).

    Article  CAS  Google Scholar 

  16. Bonifas, J.M., Rothman, A.L. & Epstein, E.H. Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities. Science 254, 1202–1205 (1991).

    Article  CAS  Google Scholar 

  17. Chan, Y. et al. A human keratin 14 “knockout”: the absence of K14 leads to severe epidermolysis bullosa simplex and a function for an intermediate filament protein. Genes Dev. 8, 2574–2587 (1994).

    Article  CAS  Google Scholar 

  18. Langhofer, M., Hopkinson, S.B. & Jones, J.C. The matrix secreted by 804G cells contains laminin-related components that participate inhemidesmosome assembly in vitro. J. Cell Sci. 753–764 (1993).

  19. Sonnenberg, A. et al. Formation of hemidesmosomes in cells of a transformed murine mammary tumor cell line and mechanisms involved in adherence of these cells to laminin and kalinin. J. Cell Sci. 106, 1083–1102 (1993).

    CAS  PubMed  Google Scholar 

  20. Mainiero, F. et al. Signal transduction by the α6β4 integrin: distinct b4 subunit sites mediate recruitment of Shc/Grb2 and association with the cytoskeleton of hemidesmosomes. EMBO J. 14, 4470–4481 (1995).

    Article  CAS  Google Scholar 

  21. Kennel, S.J. et al. Sequence of a cDNA encoding the β4 subunit of murine integrin. Gene 130, 209–216 (1993).

    Article  CAS  Google Scholar 

  22. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular cloning; a laboratory manual. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA, 1989).

  23. Gritz, L. & Davies, L. Plasmid-encoded hygromycin B resistance: the sequence of hygromycin B phosphotransferase gene and its expression in Escherichia coli and Saccharomyces cerevisiae . Gene 25, 179–188 (1983).

    Article  CAS  Google Scholar 

  24. Adra, C.N., Boer, R.H. & McBurney, M.W. Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene 60, 65–74 (1987).

    Article  CAS  Google Scholar 

  25. Te Riele, H., Robanus Maandag, E. & Berns, A. Highly efficient gene targeting in embryonic stem cells through homologous recombination with isogenic DMA constructs. Proc. Natl. Acad. Sci. USA 89, 5128–5132 (1992).

    Article  CAS  Google Scholar 

  26. Robanus Maandag, E.C. et al. Developmental rescue of an embryonic lethal mutation in the retinoblastoma gene in chimeric mice. EMBO J. 13, 4260–4268 (1994).

    Article  Google Scholar 

  27. Hooper, M., Hardy, K., Handyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).

    Article  CAS  Google Scholar 

  28. Baudoin, C., Van der Flier, A., Borradori, L. & Sonnenberg, A. Genomic organization of the β1 gene: conservation of the β1D, but not of the β1B and β1C integrin splice variants. Cell Adh. Commun. (in the press).

  29. Niessen, C.M. et al. The α6β4 integrin is a receptor for both laminin and kalinin. Exp. Cell Res. 211, 360–367 (1994).

    Article  CAS  Google Scholar 

  30. Kennel, S.J. et al. Analysis of the tumor-associated antigen TSP180. Identity with α6β4 in the integrin superfamily. J. Biol. Chem. 264, 15515–15521 (1989).

    CAS  PubMed  Google Scholar 

  31. Sonnenberg, A., Janssen, H., Hogervorst, F., Calafat, J. & Hilgers, J. A complex of platelet glycoproteins Ic and IIa identified by a rat monoclonal antibody. J. Biol. Chem. 262, 10376–10383 (1987).

    CAS  PubMed  Google Scholar 

  32. Hieda, Y., Nishizawa, Y., Uematsu, J. & Owaribe, K. Identification of a new hemidesmosomal protein, HD1: a major, high molecular mass component of isolated hemidesmosomes. J. Cell Biol. 116, 1497–1506 (1992).

    Article  CAS  Google Scholar 

  33. Hashimoto, T. et al. Further analyses of epitopes for human monoclonal anti-basement membrane zone antibodies produced by stable human hybridoma cell lines constructed with Epstein-Barr virus transformants. J. Invest. Dermatol. 100, 310–315 (1993).

    Article  CAS  Google Scholar 

  34. DiPersio, C.M., Shah, S. & Hynes, R.O. α3Aβ1 integrin localizes to focal contacts in response to diverse extracellular matrix proteins. J. Cell Sci. 108, 2321–2336 (1995).

    CAS  PubMed  Google Scholar 

  35. Rousselle, P., Lunstrum, G.P., Keene, D.R. & Burgeson, R.E. Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J. Cell Biol. 114, 567–576 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Neut, R., Krimpenfort, P., Calafat, J. et al. Epithelial detachment due to absence of hemidesmosomes in integrin β4 null mice. Nat Genet 13, 366–369 (1996). https://doi.org/10.1038/ng0796-366

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0796-366

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing