Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry

Abstract

Autophagy is emerging as a crucial defense mechanism against bacteria, but the host intracellular sensors responsible for inducing autophagy in response to bacterial infection remain unknown. Here we demonstrated that the intracellular sensors Nod1 and Nod2 are critical for the autophagic response to invasive bacteria. By a mechanism independent of the adaptor RIP2 and transcription factor NF-κB, Nod1 and Nod2 recruited the autophagy protein ATG16L1 to the plasma membrane at the bacterial entry site. In cells homozygous for the Crohn's disease–associated NOD2 frameshift mutation, mutant Nod2 failed to recruit ATG16L1 to the plasma membrane and wrapping of invading bacteria by autophagosomes was impaired. Our results link bacterial sensing by Nod proteins to the induction of autophagy and provide a functional link between Nod2 and ATG16L1, which are encoded by two of the most important genes associated with Crohn's disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Nod agonists induce autophagy in vivo and in vitro.
Figure 2: Nod1-dependent autophagy contributes to the control of intracellular bacteria.
Figure 3: Nod1 and Nod2 interact with ATG16L1.
Figure 4: Colocalization of Nod proteins and ATG16 does not depend on RIP2.
Figure 5: The ATG16L1 polymorphism associated with Crohn's disease impairs MDP- and peptidoglycan-mediated induction of autophagy.
Figure 6: Nod proteins drive ATG16L1 to the bacterial entry site to promote autophagy.
Figure 7: The most common Nod2 mutant associated with Crohn's disease fails to induce autophagy.

Similar content being viewed by others

References

  1. Mizushima, N., Levine, B., Cuervo, A.M. & Klionsky, D.J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Reggiori, F. & Klionsky, D.J. Autophagosomes: biogenesis from scratch? Curr. Opin. Cell Biol. 17, 415–422 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Hussey, S., Travassos, L.H. & Jones, N.L. Autophagy as an emerging dimension to adaptive and innate immunity. Semin. Immunol. 21, 233–241 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Marx, J. Autophagy: is it cancer's friend or foe? Science 312, 1160–1161 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Hara, T. et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Nakagawa, I. et al. Autophagy defends cells against invading group A Streptococcus. Science 306, 1037–1040 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Birmingham, C.L. et al. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3, 442–451 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Ogawa, M. et al. Escape of intracellular Shigella from autophagy. Science 307, 727–731 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Gutierrez, M.G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Birmingham, C.L. & Brumell, J.H. Autophagy recognizes intracellular Salmonella enterica serovar Typhimurium in damaged vacuoles. Autophagy 2, 156–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Carneiro, L., Magalhaes, J., Tattoli, I., Philpott, D. & Travassos, L. Nod-like proteins in inflammation and disease. J. Pathol. 214, 136–148 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Martinon, F. & Tschopp, J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol. 26, 447–454 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Meylan, E., Tschopp, J. & Karin, M. Intracellular pattern recognition receptors in the host response. Nature 442, 39–44 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Chamaillard, M. et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4, 702–707 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Girardin, S.E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300, 1584–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Girardin, S.E. et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol. Chem. 278, 8869–8872 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Girardin, S.E. et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J. Biol. Chem. 278, 41702–41708 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Inohara, N. et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2. Implications for Crohn's disease. J. Biol. Chem. 278, 5509–5512 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Inohara, N. et al. An induced proximity model for NF-κB activation in the Nod1/RICK and RIP signaling pathways. J. Biol. Chem. 275, 27823–27831 (2000).

    CAS  PubMed  Google Scholar 

  20. Abbott, D.W., Wilkins, A., Asara, J.M. & Cantley, L.C. The Crohn's disease protein, NOD2, requires RIP2 in order to induce ubiquitinylation of a novel site on NEMO. Curr. Biol. 14, 2217–2227 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Hugot, J.P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Rioux, J.D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Fritz, J.H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Magalhaes, J.G. et al. Nod2-dependent Th2 polarization of antigen-specific immunity. J. Immunol. 181, 7925–7935 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Delgado, M.A., Elmaoued, R.A., Davis, A.S., Kyei, G. & Deretic, V. Toll-like receptors control autophagy. EMBO J. 27, 1110–1121 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Mizushima, N., Ohsumi, Y. & Yoshimori, T. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27, 421–429 (2002).

    Article  PubMed  Google Scholar 

  29. Magalhaes, J.G. et al. Murine Nod1 but not its human orthologue mediates innate immune detection of tracheal cytotoxin. EMBO Rep. 6, 1201–1207 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Opitz, B. et al. Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J. Immunol. 176, 484–490 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Travassos, L.H. et al. Nod1 participates in the innate immune response to Pseudomonas aeruginosa. J. Biol. Chem. 280, 36714–36718 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5, 1166–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Carneiro, L.A. et al. Shigella induces mitochondrial dysfunction and cell death in nonmyleoid cells. Cell Host Microbe 5, 123–136 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Opitz, B. et al. Nod1-mediated endothelial cell activation by Chlamydophila pneumoniae. Circ. Res. 96, 319–326 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, S., La Motte-Mohs, R.N., Rudolph, D., Zuniga-Pflucker, J.C. & Mak, T.W. The role of nuclear factor-κB essential modulator (NEMO) in B cell development and survival. Proc. Natl. Acad. Sci. USA 100, 1203–1208 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Barnich, N., Aguirre, J.E., Reinecker, H.C., Xavier, R. & Podolsky, D.K. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-κB activation in muramyl dipeptide recognition. J. Cell Biol. 170, 21–26 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lecine, P. et al. The NOD2-RICK complex signals from the plasma membrane. J. Biol. Chem. 282, 15197–15207 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Till, A. et al. A role for membrane-bound CD147 in NOD2-mediated recognition of bacterial cytoinvasion. J. Cell Sci. 121, 487–495 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Fujita, N. et al. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19, 2092–2100 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kuballa, P., Huett, A., Rioux, J.D., Daly, M.J. & Xavier, R.J. Impaired autophagy of an intracellular pathogen induced by a Crohn's disease associated ATG16L1 variant. PLoS ONE 3, e3391 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xu, Y. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135–144 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaneko, T. et al. PGRP-LC and PGRP-LE have essential yet distinct functions in the Drosophila immune response to monomeric DAP-type peptidoglycan. Nat. Immunol. 7, 715–723 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Zaidman-Remy, A. et al. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24, 463–473 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Yano, T. et al. Autophagic control of listeria through intracellular innate immune recognition in Drosophila. Nat. Immunol. 9, 908–916 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hofius, D. et al. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137, 773–783 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Allaoui, A., Mounier, J., Prevost, M.C., Sansonetti, P.J. & Parsot, C. icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol. Microbiol. 6, 1605–1616 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Jounai, N. et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl. Acad. Sci. USA 104, 14050–14055 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Croitoru (University of Toronto) for Mode-K cells; N. Mizushima (Tokyo Medical and Dental Center) for ATG5-deficient MEFs; T. Mak (University of Toronto) for NEMO-deficient MEFs; R. Flavell (Yale University) for pEasyFlox; N. Mizushima (Tokyo Medical and Dental University Graduate School) for Flag–ΔN85-ATG16L1, Flag–ΔN85-ATG16L1*300A and HA-ATG5; R. Xavier (Harvard Medical School) for FL-ATG16L1–Myc and FL-ATG16L1*300A–Myc; M. D'Amato (Karolinska Institutet) for HA-Nod1-HA, HA-Nod2, HA–Nod2 L1007fs; F. Takeshita (Yokohama City University School of Medicine) for GFP-HA and pHR-SIN-CSGWΔNotI-GFP-LC3 GFP-Flag; C. Münz (University of Zurich) for rabbit polyclonal antibody to LC3 (anti-LC3 and for pHR-SIN-CSGWΔNotI-GFP-LC3); T.A. Kufer and E. Kremmer (University of Cologne and University of Munich) for rat monoclonal anti-Nod2; P. Sansonetti (Institute Pasteur) for S. flexneri M90T; D. Portnoy (University of California) for L. monocytogenes 10403S and the listeriolysin O deletion mutant; all other donors for reagents, antibodies, plasmids and bacterial strains; and M. Silverberg and J. Brumell for discussions. Supported by the Canadian Institutes for Health Research (L.H.T. and L.A.M.C.; MOP480142 to D.J.P.; and MOP81360 to S.E.G.), the Canadian Association Gastroenterology (S.H.), the University of Michigan (Y.-G.K.), Fondation Bettencourt-Schueller (J.G.M.), Fundação para Ciência e Tecnologia de Portugal (J.G.M.), the National Institutes of Health (DK61707 to G.N.), the Crohn's & Colitis Foundation of Canada (N.L.J., D.J.P. and S.E.G.) European Research Council (202283-PGN from SHAPE to VIR to I.G.B.) and the Howard Hughes Medical Institute (D.J.P.).

Author information

Authors and Affiliations

Authors

Contributions

L.H.T. and L.A.M.C. designed and did experiments, analyzed data and wrote the paper; M.R., S.H., J.G.M., L.Y., F.S., E.C., L.L.B., I.G.B., A.A. and N.L.J. did experiments; Y.-G.K. and G.N. contributed tools; and S.E.G. and D.J.P. designed experiment, analyzed data and wrote the paper.

Corresponding author

Correspondence to Dana J Philpott.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 1076 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Travassos, L., Carneiro, L., Ramjeet, M. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11, 55–62 (2010). https://doi.org/10.1038/ni.1823

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1823

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing