Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota

This article has been updated

Abstract

Lymphoid cells that express the nuclear hormone receptor RORγt are involved in containment of the large intestinal microbiota and defense against pathogens through the production of interleukin 17 (IL-17) and IL-22. They include adaptive IL-17-producing helper T cells (TH17 cells), as well as innate lymphoid cells (ILCs) such as lymphoid tissue–inducer (LTi) cells and IL-22-producing NKp46+ cells. Here we show that in contrast to TH17 cells, both types of RORγt+ ILCs constitutively produced most of the intestinal IL-22 and that the symbiotic microbiota repressed this function through epithelial expression of IL-25. This function was greater in the absence of adaptive immunity and was fully restored and required after epithelial damage, which demonstrates a central role for RORγt+ ILCs in intestinal homeostasis. Our data identify a finely tuned equilibrium among intestinal symbionts, adaptive immunity and RORγt+ ILCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RORγt+ ILCs are the main producers of IL-22 in the intestine.
Figure 2: The production of proinflammatory cytokines by RORγt+ ILCs.
Figure 3: The microbiota represses IL-22 production by RORγt+ ILCs.
Figure 4: The microbiota represses the activity of RORγt+ ILCs via IL-25.
Figure 5: Adaptive immunity represses the activity of RORγt+ ILCs.
Figure 6: Epithelial damage de-represses the activity of RORγt+ ILCs.
Figure 7: The activity of RORγt+ ILCs is required for protection and recovery from colitis.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

Change history

  • 27 February 2011

    In the version of this article initially published online, the first sentence of the abstract was incorrect. This sentence should begin “Lymphoid cells that express the nuclear hormone receptor RORγt....” The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. & Gordon, J.I. Host-bacterial mutualism in the human intestine. Science 307, 1915–1920 (2005).

    Article  Google Scholar 

  2. Duerkop, B.A., Vaishnava, S. & Hooper, L.V. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31, 368–376 (2009).

    Article  CAS  Google Scholar 

  3. Nagler-Anderson, C. Man the barrier! Strategic defences in the intestinal mucosa. Nat. Rev. Immunol. 1, 59–67 (2001).

    Article  CAS  Google Scholar 

  4. Eberl, G. & Lochner, M. The development of intestinal lymphoid tissues at the interface of self and microbiota. Mucosal Immunol. 2, 478–485 (2009).

    Article  CAS  Google Scholar 

  5. Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009).

    Article  CAS  Google Scholar 

  6. Eberl, G. A new vision of immunity: homeostasis of the superorganism. Mucosal Immunol. 3, 450–460 (2010).

    Article  CAS  Google Scholar 

  7. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    Article  CAS  Google Scholar 

  8. Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity 21, 241–254 (2004).

    Article  CAS  Google Scholar 

  9. Wolk, K. et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol. 36, 1309–1323 (2006).

    Article  CAS  Google Scholar 

  10. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    Article  CAS  Google Scholar 

  11. Sonnenberg, G.F., Monticelli, L.A., Elloso, M.M., Fouser, L.A. & Artis, D. CD4+ lymphoid tissue-inducer cells promote innate immunity in the gut. Immunity 34, 122–134 (2011).

    Article  CAS  Google Scholar 

  12. Aujla, S.J. et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nat. Med. 14, 275–281 (2008).

    Article  CAS  Google Scholar 

  13. De Luca, A. et al. IL-22 defines a novel immune pathway of antifungal resistance. Mucosal Immunol. 3, 361–373 (2010).

    Article  CAS  Google Scholar 

  14. Pan, H., Hong, F., Radaeva, S. & Gao, B. Hydrodynamic gene delivery of interleukin-22 protects the mouse liver from concanavalin A-, carbon tetrachloride-, and Fas ligand-induced injury via activation of STAT3. Cell. Mol. Immunol. 1, 43–49 (2004).

    CAS  PubMed  Google Scholar 

  15. Zenewicz, L.A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    Article  CAS  Google Scholar 

  16. Zenewicz, L.A. et al. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29, 947–957 (2008).

    Article  CAS  Google Scholar 

  17. Kastelein, R.A., Hunter, C.A. & Cua, D.J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221–242 (2007).

    Article  CAS  Google Scholar 

  18. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  Google Scholar 

  19. Kreymborg, K. et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J. Immunol. 179, 8098–8104 (2007).

    Article  CAS  Google Scholar 

  20. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  Google Scholar 

  21. Wolk, K., Kunz, S., Asadullah, K. & Sabat, R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J. Immunol. 168, 5397–5402 (2002).

    Article  CAS  Google Scholar 

  22. Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    Article  CAS  Google Scholar 

  23. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  Google Scholar 

  24. Cella, M. et al. A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature 457, 722–725 (2009).

    Article  CAS  Google Scholar 

  25. Sanos, S.L. et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    Article  CAS  Google Scholar 

  26. Luci, C. et al. Influence of the transcription factor RORgammat on the development of NKp46+ cell populations in gut and skin. Nat. Immunol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  27. Cupedo, T. et al. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol. 10, 66–74 (2009).

    Article  CAS  Google Scholar 

  28. Mebius, R.E., Rennert, P. & Weissman, I.L. Developing lymph nodes collect CD4+CD3LTβ+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7, 493–504 (1997).

    Article  CAS  Google Scholar 

  29. Eberl, G. & Littman, D.R. Thymic origin of intestinal αβ T cells revealed by fate mapping of RORγt+ cells. Science 305, 248–251 (2004).

    Article  CAS  Google Scholar 

  30. Takatori, H. et al. Lymphoid tissue inducer-like cells are an innate source of IL-17 and IL-22. J. Exp. Med. 206, 35–41 (2009).

    Article  CAS  Google Scholar 

  31. Sawa, S. et al. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330, 665–669 (2010).

    Article  CAS  Google Scholar 

  32. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  Google Scholar 

  33. Eberl, G. et al. An essential function for the nuclear receptor RORγt in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol. 5, 64–73 (2004).

    Article  CAS  Google Scholar 

  34. Ivanov, I.I. et al. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4, 337–349 (2008).

    Article  CAS  Google Scholar 

  35. Bouskra, D. et al. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature 456, 507–510 (2008).

    Article  CAS  Google Scholar 

  36. Lochner, M. et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-10+ Foxp3+ RORγt+ T cells. J. Exp. Med. 205, 1381–1393 (2008).

    Article  CAS  Google Scholar 

  37. Yoshida, H. et al. IL-7 receptor α+ CD3 cells in the embryonic intestine induces the organizing center of Peyer's patches. Int. Immunol. 11, 643–655 (1999).

    Article  CAS  Google Scholar 

  38. Mebius, R.E. Organogenesis of lymphoid tissues. Nat. Rev. Immunol. 3, 292–303 (2003).

    Article  CAS  Google Scholar 

  39. Zaph, C. et al. Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med. 205, 2191–2198 (2008).

    Article  CAS  Google Scholar 

  40. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  Google Scholar 

  41. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2009).

    Article  Google Scholar 

  42. Geier, M.S., Smith, C.L., Butler, R.N. & Howarth, G.S. Small-intestinal manifestations of dextran sulfate sodium consumption in rats and assessment of the effects of Lactobacillus fermentum BR11. Dig. Dis. Sci. 54, 1222–1228 (2009).

    Article  CAS  Google Scholar 

  43. Lochner, M. et al. Microbiota-induced tertiary lymphoid tissues aggravate inflammatory disease in the absence of RORγt and LTi cells. J. Exp. Med. 208, 125–134 (2011).

    Article  CAS  Google Scholar 

  44. Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu. Rev. Immunol. 21, 759–806 (2003).

    Article  CAS  Google Scholar 

  45. Eberl, G. Immunology: Close encounters of the second type. Nature 464, 1285–1286 (2010).

    Article  CAS  Google Scholar 

  46. Harris, T.J. et al. Cutting edge: An in vivo requirement for STAT3 signaling in TH17 development and TH17-dependent autoimmunity. J. Immunol. 179, 4313–4317 (2007).

    Article  CAS  Google Scholar 

  47. Mathur, A.N. et al. Stat3 and Stat4 direct development of IL-17-secreting Th cells. J. Immunol. 178, 4901–4907 (2007).

    Article  CAS  Google Scholar 

  48. Dong, C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat. Rev. Immunol. 8, 337–348 (2008).

    Article  CAS  Google Scholar 

  49. Jensen, K.D. et al. Thymic selection determines γδ T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29, 90–100 (2008).

    Article  CAS  Google Scholar 

  50. Michel, M.L. et al. Critical role of ROR-γt in a new thymic pathway leading to IL-17-producing invariant NKT cell differentiation. Proc. Natl. Acad. Sci. USA 105, 19845–19850 (2008).

    Article  CAS  Google Scholar 

  51. Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009).

    Article  CAS  Google Scholar 

  52. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    Article  CAS  Google Scholar 

  53. Hans, W., Scholmerich, J., Gross, V. & Falk, W. The role of the resident intestinal flora in acute and chronic dextran sulfate sodium-induced colitis in mice. Eur. J. Gastroenterol. Hepatol. 12, 267–273 (2000).

    Article  CAS  Google Scholar 

  54. Buonocore, S. et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464, 1371–1375 (2010).

    Article  CAS  Google Scholar 

  55. Zenewicz, L.A., Antov, A. & Flavell, R.A. CD4 T-cell differentiation and inflammatory bowel disease. Trends Mol. Med. 15, 199–207 (2009).

    Article  CAS  Google Scholar 

  56. Sarra, M., Pallone, F., Macdonald, T.T. & Monteleone, G. IL-23/IL-17 axis in IBD. Inflamm. Bowel Dis. 16, 1808–1813 (2010).

    Article  Google Scholar 

  57. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  Google Scholar 

  58. Kleinschek, M.A. et al. IL-25 regulates Th17 function in autoimmune inflammation. J. Exp. Med. 204, 161–170 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Lymphoid Tissue Development Unit for discussions and critical reading of the manuscript; L. Polomack for technical assistance; J. Perez and E. Maranghi for work on germ-free mice; and B. Ryffel for p19-deficient mice. Supported by the Institut Pasteur, the Mairie de Paris, the Agence Nationale de la Recherche, the European Commission, Deutsche Forschungsgemeinschaft (M.L.) and the Schlumberger Foundation (M.L.).

Author information

Authors and Affiliations

Authors

Contributions

S.S. and G.E. designed the study and wrote the manuscript; S.S. did most of the experimental work; M.L. contributed to the analysis of T cells and DSS-mediated colitis; N.S.-T. contributed to the analysis of NKp46+ ILCs; S.D. did laser-capture microdissection; M.B. generated germ-free mice; M.K. and D.C. generated and provided IL-25-deficient mice; and J.P.D.S. contributed to data analysis and manuscript writing.

Corresponding author

Correspondence to Gérard Eberl.

Ethics declarations

Competing interests

D.C. and M.K. are employees of Merck Research Laboratories, DNAX Discovery Research.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 1510 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawa, S., Lochner, M., Satoh-Takayama, N. et al. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat Immunol 12, 320–326 (2011). https://doi.org/10.1038/ni.2002

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2002

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing