Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation

Abstract

Interleukin 9 (IL-9) is a cytokine linked to lung inflammation, but its cellular origin and function remain unclear. Here we describe a reporter mouse strain designed to map the fate of cells that have activated IL-9. We found that during papain-induced lung inflammation, IL-9 production was largely restricted to innate lymphoid cells (ILCs). IL-9 production by ILCs depended on IL-2 from adaptive immune cells and was rapidly lost in favor of other cytokines, such as IL-13 and IL-5. Blockade of IL-9 production via neutralizing antibodies resulted in much lower expression of IL-13 and IL-5, which suggested that ILCs provide the missing link between the well-established functions of IL-9 in the regulation of type 2 helper T cell cytokines and responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Papain-induced eYFP+ cells do not express lineage markers.
Figure 2: IL-9 expression by ILCs is transient.
Figure 3: IL-9 in ILCs is induced by IL-2 but not by IL-25, IL-33 or TSLP.
Figure 4: Intranasal challenge with IL-33 induces ILCs poised for IL-9 production.
Figure 5: IL-9 expression in ILCs depends on IL-2 and the adaptive immune system.
Figure 6: ILCs are the main source of IL-9.
Figure 7: IL-9 promotes cytokine expression in ILCs.

Similar content being viewed by others

References

  1. Erpenbeck, V.J. et al. Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. J. Allergy Clin. Immunol. 111, 1319–1327 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Shimbara, A. et al. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. J. Allergy Clin. Immunol. 105, 108–115 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. White, B., Leon, F., White, W. & Robbie, G. Two first-in-human, open-label, phase I dose-escalation safety trials of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin. Ther. 31, 728–740 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Temann, U.A., Laouar, Y., Eynon, E.E., Homer, R. & Flavell, R.A. IL9 leads to airway inflammation by inducing IL13 expression in airway epithelial cells. Int. Immunol. 19, 1–10 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Temann, U.A., Geba, G.P., Rankin, J.A. & Flavell, R.A. Expression of interleukin 9 in the lungs of transgenic mice causes airway inflammation, mast cell hyperplasia, and bronchial hyperresponsiveness. J. Exp. Med. 188, 1307–1320 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Temann, U.A., Ray, P. & Flavell, R.A. Pulmonary overexpression of IL-9 induces Th2 cytokine expression, leading to immune pathology. J. Clin. Invest. 109, 29–39 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng, G. et al. Anti-interleukin-9 antibody treatment inhibits airway inflammation and hyperreactivity in mouse asthma model. Am. J. Respir. Crit. Care Med. 166, 409–416 (2002).

    Article  PubMed  Google Scholar 

  8. Kung, T.T. et al. Effect of anti-mIL-9 antibody on the development of pulmonary inflammation and airway hyperresponsiveness in allergic mice. Am. J. Respir. Cell Mol. Biol. 25, 600–605 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Townsend, J.M. et al. IL-9-deficient mice establish fundamental roles for IL-9 in pulmonary mastocytosis and goblet cell hyperplasia but not T cell development. Immunity 13, 573–583 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Kearley, J. et al. IL-9 governs allergen-induced mast cell numbers in the lung and chronic remodeling of the airways. Am. J. Respir. Crit. Care Med. 183, 865–875 (2010).

    Article  PubMed  Google Scholar 

  11. Wynn, T.A. IL-13 effector functions. Annu. Rev. Immunol. 21, 425–456 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Cho, J.Y. et al. Inhibition of airway remodeling in IL-5-deficient mice. J. Clin. Invest. 113, 551–560 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Faulkner, H., Renauld, J.C., Van Snick, J. & Grencis, R.K. Interleukin-9 enhances resistance to the intestinal nematode Trichuris muris. Infect. Immun. 66, 3832–3840 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Faulkner, H., Humphreys, N., Renauld, J.C., Van Snick, J. & Grencis, R. Interleukin-9 is involved in host protective immunity to intestinal nematode infection. Eur. J. Immunol. 27, 2536–2540 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Richard, M., Grencis, R.K., Humphreys, N.E., Renauld, J.C. & Van Snick, J. Anti-IL-9 vaccination prevents worm expulsion and blood eosinophilia in Trichuris muris-infected mice. Proc. Natl. Acad. Sci. USA 97, 767–772 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Angkasekwinai, P., Chang, S.H., Thapa, M., Watarai, H. & Dong, C. Regulation of IL-9 expression by IL-25 signaling. Nat. Immunol. 11, 250–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang, H.C. et al. The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat. Immunol. 11, 527–534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Veldhoen, M. et al. Transforming growth factor-beta 'reprograms' the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat. Immunol. 9, 1341–1346 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Gounni, A.S. et al. IL-9 expression by human eosinophils: regulation by IL-1beta and TNF-alpha. J. Allergy Clin. Immunol. 106, 460–466 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Hültner, L. et al. In activated mast cells, IL-1 up-regulates the production of several Th2-related cytokines including IL-9. J. Immunol. 164, 5556–5563 (2000).

    Article  PubMed  Google Scholar 

  22. Stassen, M. et al. Murine bone marrow-derived mast cells as potent producers of IL-9: costimulatory function of IL-10 and kit ligand in the presence of IL-1. J. Immunol. 164, 5549–5555 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Fallon, P.G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hurst, S.D. et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. J. Immunol. 169, 443–453 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Fort, M.M. et al. IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15, 985–995 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Saenz, S.A. et al. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature 464, 1362–1366 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moro, K. et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Price, A.E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA 107, 11489–11494 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spits, H. & Di Santo, J.P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat. Immunol. 12, 21–27 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Tan, C. et al. Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site. J. Immunol. 185, 6795–6801 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Novey, H.S., Marchioli, L.E., Sokol, W.N. & Wells, I.D. Papain-induced asthma–physiological and immunological features. J. Allergy Clin. Immunol. 63, 98–103 (1979).

    Article  CAS  PubMed  Google Scholar 

  33. Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310–318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oboki, K. et al. IL-33 is a crucial amplifier of innate rather than acquired immunity. Proc. Natl. Acad. Sci. USA 107, 18581–18586 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Y.H. et al. A novel subset of CD4+ T(H)2 memory/effector cells that produce inflammatory IL-17 cytokine and promote the exacerbation of chronic allergic asthma. J. Exp. Med. 207, 2479–2491 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hirota, K. et al. Fate mapping of IL-17-producing T cells in inflammatory responses. Nat. Immunol. 12, 255–263 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Houssiau, F.A. et al. A cascade of cytokines is responsible for IL-9 expression in human T cells. Involvement of IL-2, IL-4, and IL-10. J. Immunol. 154, 2624–2630 (1995).

    CAS  PubMed  Google Scholar 

  38. Houssiau, F.A., Renauld, J.C., Fibbe, W.E. & Van Snick, J. IL-2 dependence of IL-9 expression in human T lymphocytes. J. Immunol. 148, 3147–3151 (1992).

    CAS  PubMed  Google Scholar 

  39. Belyaev, N.N. et al. Induction of an IL7-R+c-Kit(hi) myelolymphoid progenitor critically dependent on IFN-γ signaling during acute malaria. Nat. Immunol. 11, 477–485 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Chang, Y.J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Steenwinckel, V. et al. IL-9 promotes IL-13-dependent paneth cell hyperplasia and up-regulation of innate immunity mediators in intestinal mucosa. J. Immunol. 182, 4737–4743 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Wilson and A. Potocnik for advice and discussion and the Division of Biological Services for breeding and maintenance of our mouse strains. Supported by the Medical Research Council UK (U117512792) and Sonderforschungsbereich (SFB 587 to T.S. and K.L.).

Author information

Authors and Affiliations

Authors

Contributions

C.W. designed and did the experiments and wrote the manuscript; K.H. provided advice and contributed to experiments; B.S. purified neutralizing antibodies; K.L. and T.S. provided help and advice for the BAC construct; J.V.S. provided reagents; M.T. did the BAC injections; H.H. provided advice; and B.S. designed experiments and wrote the manuscript.

Corresponding author

Correspondence to Brigitta Stockinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Table 1 (PDF 2535 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, C., Hirota, K., Stieglitz, B. et al. An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 12, 1071–1077 (2011). https://doi.org/10.1038/ni.2133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2133

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing