Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection

Abstract

NOD2 receptor and the cytosolic protein kinase RIPK2 regulate NF-κB and MAP kinase signaling during bacterial infections, but the role of this immune axis during viral infections has not been addressed. We demonstrate that Nod2−/− and Ripk2−/− mice are hypersusceptible to infection with influenza A virus. Ripk2−/− cells exhibited defective autophagy of mitochondria (mitophagy), leading to enhanced mitochondrial production of superoxide and accumulation of damaged mitochondria, which resulted in greater activation of the NLRP3 inflammasome and production of IL-18. RIPK2 regulated mitophagy in a kinase-dependent manner by phosphorylating the mitophagy inducer ULK1. Accordingly, Ulk1−/− cells exhibited enhanced mitochondrial production of superoxide and activation of caspase-1. These results demonstrate a role for NOD2-RIPK2 signaling in protection against virally triggered immunopathology by negatively regulating activation of the NLRP3 inflammasome and production of IL-18 via ULK1-dependent mitophagy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RIPK2 deficiency leads to hyperinflammation.
Figure 2: RIPK2 modulates cytokine and chemokine production.
Figure 3: IL-18 mediates hyperinflammation in Ripk2−/− mice.
Figure 4: Both hematopoietic and lung epithelial cells contribute to hypercytokinemia.
Figure 5: Elevated IL-18 in Ripk2−/− cells is NLRP3 inflammasome-dependent.
Figure 6: RIPK2 modulates inflammasome activation through autophagy.
Figure 7: RIPK2 specifically regulates mitophagy and accumulation of damaged mitochondria to modulate inflammasome activation.
Figure 8: RIPK2 regulates activation of the critical autophagy protein ULK1 in response to IAV infection.

Similar content being viewed by others

References

  1. Kilbourne, E.D. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 12, 9–14 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Taubenberger, J.K. & Morens, D.M. 1918 Influenza: the mother of all pandemics. Emerg. Infect. Dis. 12, 15–22 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  3. de Jong, M.D. et al. Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. Nat. Med. 12, 1203–1207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kobasa, D. et al. Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445, 319–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Perrone, L.A., Plowden, J.K., Garcia-Sastre, A., Katz, J.M. & Tumpey, T.M. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog. 4, e1000115 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tumpey, T.M. et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 310, 77–80 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Guillot, L. et al. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J. Biol. Chem. 280, 5571–5580 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Heer, A.K. et al. TLR signaling fine-tunes anti-influenza B cell responses without regulating effector T cell responses. J. Immunol. 178, 2182–2191 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Rehwinkel, J. et al. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140, 397–408 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Allen, I.C. et al. The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30, 556–565 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ichinohe, T., Pang, I.K. & Iwasaki, A. Influenza virus activates inflammasomes via its intracellular M2 ion channel. Nat. Immunol. 11, 404–410 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thomas, P.G. et al. The intracellular sensor NLRP3 mediates key innate and healing responses to influenza A virus via the regulation of caspase-1. Immunity 30, 566–575 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kanneganti, T.D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281, 36560–36568 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 10, 417–426 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. Mortimore, G.E., Hutson, N.J. & Surmacz, C.A. Quantitative correlation between proteolysis and macro- and microautophagy in mouse hepatocytes during starvation and refeeding. Proc. Natl. Acad. Sci. USA 80, 2179–2183 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shi, C.S. et al. Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Geisler, S. et al. The PINK1/Parkin-mediated mitophagy is compromised by PD-associated mutations. Autophagy 6, 871–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Anand, P.K. et al. TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation. J. Biol. Chem. 286, 42981–42991 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Uhl, M. et al. Autophagy within the antigen donor cell facilitates efficient antigen cross-priming of virus-specific CD8+ T cells. Cell Death Differ. 16, 991–1005 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. Cooney, R. et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 16, 90–97 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Homer, C.R., Richmond, A.L., Rebert, N.A., Achkar, J.P. & McDonald, C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn′s disease pathogenesis. Gastroenterology 139, 1630–1641 (2010).

  24. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature 416, 194–199 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Dugan, J.W. et al. Nucleotide oligomerization domain-2 interacts with 2′-5′-oligoadenylate synthetase type 2 and enhances RNase-L function in THP-1 cells. Mol. Immunol. 47, 560–566 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sabbah, A. et al. Activation of innate immune antiviral responses by Nod2. Nat. Immunol. 10, 1073–1080 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Park, J.H. et al. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 178, 2380–2386 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Ishikawa, H. et al. IFN-gamma production downstream of NKT cell activation in mice infected with influenza virus enhances the cytolytic activities of both NK cells and viral antigen-specific CD8+ T cells. Virology 407, 325–332 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Okamura, H. et al. Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378, 88–91 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Kim, S. et al. Listeria monocytogenes is sensed by the NLRP3 and AIM2 inflammasome. Eur. J. Immunol. 40, 1545–1551 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Black, R.A., Kronheim, S.R., Merriam, J.E., March, C.J. & Hopp, T.P. A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J. Biol. Chem. 264, 5323–5326 (1989).

    CAS  PubMed  Google Scholar 

  32. Lamkanfi, M. et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J. Cell Biol. 187, 61–70 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tsuchiya, K. et al. Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. J. Immunol. 185, 1186–1195 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Sarkar, A. et al. ASC directs NF-kappaB activation by regulating receptor interacting protein-2 (RIP2) caspase-1 interactions. J. Immunol. 176, 4979–4986 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Travassos, L.H. et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 11, 55–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Joo, J.H. et al. Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol. Cell 43, 572–585 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5, 1166–1174 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi, K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Kash, J.C. et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443, 578–581 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rainsford, K.D. Influenza (“Bird Flu”), inflammation and anti-inflammatory/analgesic drugs. Inflammopharmacology 14, 2–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  43. Netea, M.G. et al. Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Escherichia coli and Salmonella typhimurium endotoxemia. J. Immunol. 164, 2644–2649 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Raeburn, C.D. et al. Neutralization of IL-18 attenuates lipopolysaccharide-induced myocardial dysfunction. Am. J. Physiol. Heart Circ. Physiol. 283, H650–H657 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Zhou, R., Yazdi, A.S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Hoffmann, E., Krauss, S., Perez, D., Webby, R. & Webster, R.G. Eight-plasmid system for rapid generation of influenza virus vaccines. Vaccine 20, 3165–3170 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Takeda, K. et al. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity 8, 383–390 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Huang, G. et al. Signaling via the kinase p38alpha programs dendritic cells to drive TH17 differentiation and autoimmune inflammation. Nat. Immunol. 13, 152–161 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kundu, M. et al. Ulk1 plays a critical role in the autophagic clearance of mitochondria and ribosomes during reticulocyte maturation. Blood 112, 1493–1502 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank members of the Veterinary Pathology Core lab at St. Jude for their work in processing of hematoxylin and eosin–stained and immunohistochemistry slides, members of the Cell and Tissue Imaging Core facility for their help in preparing and imaging transmission electron microscopy samples, and A. Coyle, E. Grant, J. Bertin (Millennium Pharmaceuticals), T. Mak (University of Toronto) and R. Flavell (Yale University) for providing mutant mice. M.L. is supported by grants from the EU Framework Program 7 (Marie-Curie grant 256432), European Research Council (grant 281600) and the Fund for Scientific Research Flanders (G030212N, 1.2.201.10.N.00 and 1.5.122.11.N.00). This work was supported by US National Institutes of Health grants (AR056296, AI101935 and CA163507) and the American Lebanese Syrian Associated Charities to T.-D.K.

Author information

Authors and Affiliations

Authors

Contributions

C.L. designed and conducted experiments, and wrote the manuscript. P.G.T. helped conduct the initial experiments in vivo in Ripk2−/− mice and helped design T cell experiments. P.K.A. conducted experiments with L. monocytogenes and helped write the manuscript. P.V. helped design experiments and interpret histopathology data. S.M. helped design and conduct experiments related to mitophagy and mitochondrial damage. J.M. helped design experiments related to mitophagy and mitochondrial damage. G.H. helped design and conduct experiments with Mapk14 conditional knockout mice. M.G. conducted experiments for IL-18, NF-κB and MAPK signaling. M.K. helped design experiments, and provided Ulk1−/− mice and other reagents for ULK1 experiments. H.C. helped design experiments and provided Mapk14 conditional knockout mice. R.J.X. helped design experiments and provided reagents for ATG16-related experiments and autophagy in general. D.R.G. helped design experiments and provided reagents for mitophagy-related experiments. M.L. helped design experiments and provided reagents for caspase-1 activation and interaction studies. C.A.D. helped design experiments and provided reagents for IL-18 neutralization studies. P.C.D. helped design experiments, provided reagents for T cell experiments and helped write the manuscript. T.-D.K. conceived project, designed experiments, analyzed data, helped write the manuscript and oversaw the project.

Corresponding author

Correspondence to Thirumala-Devi Kanneganti.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 (PDF 857 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lupfer, C., Thomas, P., Anand, P. et al. Receptor interacting protein kinase 2–mediated mitophagy regulates inflammasome activation during virus infection. Nat Immunol 14, 480–488 (2013). https://doi.org/10.1038/ni.2563

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2563

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing