Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular control of activation and priming in macrophages

Abstract

In tissues, macrophages are exposed to metabolic, homeostatic and immunoregulatory signals of local or systemic origin that influence their basal functions and responses to danger signals. Signal-transduction pathways regulated by extracellular signals are coupled to distinct sets of broadly expressed stimulus-regulated transcription factors whose ability to elicit gene-expression changes is influenced by the accessibility of their binding sites in the macrophage genome. In turn, accessibility of macrophage-specific transcriptional regulatory elements (enhancers and promoters) is specified by transcription factors that determine the macrophage lineage or impose their tissue-specific properties. Here we review recent findings that advance the understanding of mechanisms underlying priming and signal-dependent activation of macrophages and discuss the effect of genetic variation on these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The interplay between homeostatic tissue signals and danger signals in the control of macrophage function.
Figure 2: Three main groups of receptors relevant to macrophage activation classified on the basis of the main transcription factors coupled to them.
Figure 3: Interplay between LDTFs and SRTFs in the control of gene expression.
Figure 4: Effect of natural genetic variation on enhancer selection and function.

Similar content being viewed by others

References

  1. Mosser, D.M. & Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lawrence, T. & Natoli, G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat. Rev. Immunol. 11, 750–761 (2011).

    CAS  PubMed  Google Scholar 

  3. Murray, P.J. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41, 14–20 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Janeway, C.A. Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1–13 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    CAS  PubMed  Google Scholar 

  6. Goubau, D., Deddouche, S. & Reis e Sousa, C. Cytosolic sensing of viruses. Immunity 38, 855–869 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hornung, V., Hartmann, R., Ablasser, A. & Hopfner, K.-P.P. OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 14, 521–528 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    CAS  PubMed  Google Scholar 

  9. Cai, X., Chiu, Y.-H.H. & Chen, Z.J. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol. Cell 54, 289–296 (2014).

    CAS  PubMed  Google Scholar 

  10. Bianchi, M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol. 81, 1–5 (2007).

    CAS  PubMed  Google Scholar 

  11. Hochreiter-Hufford, A. & Ravichandran, K.S. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol. 5, a008748 (2013).

    PubMed  PubMed Central  Google Scholar 

  12. Van Dyken, S.J. & Locksley, R.M. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu. Rev. Immunol. 31, 317–343 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Varin, A., Mukhopadhyay, S., Herbein, G. & Gordon, S. Alternative activation of macrophages by IL-4 impairs phagocytosis of pathogens but potentiates microbial-induced signalling and cytokine secretion. Blood 115, 353–362 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Haldar, M. et al. Heme-mediated SPI-C induction promotes monocyte differentiation into iron-recycling macrophages. Cell 156, 1223–1234 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rosas, M. et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 344, 645–648 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Okabe, Y. & Medzhitov, R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell 157, 832–844 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chawla, A., Nguyen, K.D. & Goh, Y.P. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 11, 738–749 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Colegio, O.R. et al. Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559–563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Tannahill, G.M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Taylor, P.R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    CAS  PubMed  Google Scholar 

  22. McWhorter, F.Y., Wang, T., Nguyen, P., Chung, T. & Liu, W.F. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. USA 110, 17253–17258 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Häcker, H. & Karin, M. Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13 (2006).

    PubMed  Google Scholar 

  24. Arthur, J.S. & Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 13, 679–692 (2013).

    CAS  PubMed  Google Scholar 

  25. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    CAS  PubMed  Google Scholar 

  26. O'Shea, J.J. & Murray, P.J. Cytokine signaling modules in inflammatory responses. Immunity 28, 477–487 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ivashkiv, L.B. & Donlin, L.T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Glass, C.K. & Saijo, K. Nuclear receptor transrepression pathways that regulate inflammation in macrophages and T cells. Nat. Rev. Immunol. 10, 365–376 (2010).

    CAS  PubMed  Google Scholar 

  29. Ito, A. et al. LXRs link metabolism to inflammation through Abca1-dependent regulation of membrane composition and TLR signaling. eLife 4, e08009 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Li, P. et al. NCoR repression of LXRs restricts macrophage biosynthesis of insulin-sensitizing omega 3 fatty acids. Cell 155, 200–214 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Uhlenhaut, N.H. et al. Insights into negative regulation by the glucocorticoid receptor from genome-wide profiling of inflammatory cistromes. Mol. Cell 49, 158–171 (2013).

    CAS  PubMed  Google Scholar 

  32. Gosselin, D. et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell 159, 1327–1340 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schneider, C. et al. Induction of the nuclear receptor PPAR-gamma by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat. Immunol. 15, 1026–1037 (2014).

    CAS  PubMed  Google Scholar 

  34. Jaitin, D.A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343, 776–779 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Li, S.K., Abbas, A.K., Solomon, L.A., Groux, G.M. & DeKoter, R.P. Nfkb1 activation by the E26 transformation-specific transcription factors PU.1 and Spi-B promotes Toll-like receptor-mediated splenic B cell proliferation. Mol. Cell. Biol. 35, 1619–1632 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).

    CAS  PubMed  Google Scholar 

  37. Jiang, C. & Pugh, B. Nucleosome positioning and gene regulation: advances through genomics. Nat. Rev. Genet. 10, 161–172 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Struhl, K. & Segal, E. Determinants of nucleosome positioning. Nat. Struct. Mol. Biol. 20, 267–273 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Segal, E. et al. A genomic code for nucleosome positioning. Nature 442, 772–778 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Ramirez-Carrozzi, V.R. et al. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell 138, 114–128 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Fenouil, R. et al. CpG islands and GC content dictate nucleosome depletion in a transcription-independent manner at mammalian promoters. Genome Res. 22, 2399–2408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Barozzi, I. et al. Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers. Mol. Cell 54, 844–857 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lidor Nili, E. et al. p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy. Genome Res. 20, 1361–1368 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Gardner, K.E., Allis, C.D. & Strahl, B.D. Operating on chromatin, a colorful language where context matters. J. Mol. Biol. 409, 36–46 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Smale, S.T., Tarakhovsky, A. & Natoli, G. Chromatin contributions to the regulation of innate immunity. Annu. Rev. Immunol. 32, 489–511 (2014).

    CAS  PubMed  Google Scholar 

  46. Nicodeme, E. et al. Suppression of inflammation by a synthetic histone mimic. Nature 468, 1119–1123 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan, C.H. et al. BET bromodomain inhibition suppresses transcriptional responses to cytokine-Jak-STAT signaling in a gene-specific manner in human monocytes. Eur. J. Immunol. 45, 287–297 (2015).

    CAS  PubMed  Google Scholar 

  48. Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell 129, 823–837 (2007).

    CAS  PubMed  Google Scholar 

  49. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Consortium, E.P. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

    Google Scholar 

  51. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Heinz, S., Romanoski, C.E., Benner, C. & Glass, C.K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Iwafuchi-Doi, M. & Zaret, K.S. Pioneer transcription factors in cell reprogramming. Genes Dev. 28, 2679–2692 (2014).

    PubMed  PubMed Central  Google Scholar 

  54. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Escoubet-Lozach, L. et al. Mechanisms establishing TLR4-responsive activation states of inflammatory response genes. PLoS Genet. 7, e1002401 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Rogatsky, I. & Adelman, K. Preparing the first responders: building the inflammatory transcriptome from the ground up. Mol. Cell 54, 245–254 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hargreaves, D.C., Horng, T. & Medzhitov, R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell 138, 129–145 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Bhatt, D.M. et al. Transcript dynamics of proinflammatory genes revealed by sequence analysis of subcellular RNA fractions. Cell 150, 279–290 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Qiao, Y. et al. Synergistic activation of inflammatory cytokine genes by interferon-γ-induced chromatin remodeling and toll-like receptor signaling. Immunity 39, 454–469 (2013).

    CAS  PubMed  Google Scholar 

  60. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory eements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ghisletti, S. et al. Identification and characterization of enhancers controlling the inflammatory gene expression program in macrophages. Immunity 32, 317–328 (2010).

    CAS  PubMed  Google Scholar 

  62. Lichtinger, M. et al. RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis. EMBO J. 31, 4318–4333 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mancino, A. et al. A dual cis-regulatory code links IRF8 to constitutive and inducible gene expression in macrophages. Genes Dev. 29, 394–408 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Heinz, S. et al. Effect of natural genetic variation on enhancer selection and function. Nature 503, 487–492 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kaikkonen, M.U. et al. Remodeling of the enhancer landscape during macrophage activation Is coupled to enhancer transcription. Mol. Cell 51, 310–325 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Barish, G.D. et al. Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes Dev. 24, 2760–2765 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Ostuni, R. et al. Latent enhancers activated by stimulation in differentiated cells. Cell 152, 157–171 (2013).

    CAS  PubMed  Google Scholar 

  68. Kim, T.K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature 465, 182–187 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. De Santa, F. et al. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol. 8, e1000384 (2010).

    PubMed  PubMed Central  Google Scholar 

  70. Koch, F. et al. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat. Struct. Mol. Biol. 18, 956–963 (2011).

    CAS  PubMed  Google Scholar 

  71. Arner, E. et al. Gene regulation. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science 347, 1010–1014 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lam, M.T., Li, W., Rosenfeld, M.G. & Glass, C.K. Enhancer RNAs and regulated transcriptional programs. Trends Biochem. Sci. 39, 170–182 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Li, W. et al. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498, 516–520 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lai, F. et al. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schaukowitch, K. et al. Enhancer RNA facilitates NELF release from immediate early genes. Mol. Cell 56, 29–42 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Natoli, G. & Andrau, J.C. Noncoding transcription at enhancers: general principles and functional models. Annu. Rev. Genet. 46, 1–19 (2012).

    CAS  PubMed  Google Scholar 

  77. Hu, D. et al. The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers. Mol. Cell. Biol. 33, 4745–4754 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Lee, J.E. et al. H3K4 mono- and di-methyltransferase MLL4 is required for enhancer activation during cell differentiation. eLife 2, e01503 (2013).

    PubMed  PubMed Central  Google Scholar 

  79. Smallwood, A. & Ren, B. Genome organization and long-range regulation of gene expression by enhancers. Curr. Opin. Cell Biol. 25, 387–394 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Parnas, O. et al. A Genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162, 675–686 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Gautier, E.L. et al. Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages. Nat. Immunol. 13, 1118–1128 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Lavin, Y. et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 159, 1312–1326 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Hindorff, L.A. et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ward, L.D. & Kellis, M. Interpreting noncoding genetic variation in complex traits and human disease. Nat. Biotechnol. 30, 1095–1106 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Soccio, R.E. et al. Genetic variation determines PPARγ function and anti-diabetic drug response in vivo. Cell 162, 33–44 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher K Glass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glass, C., Natoli, G. Molecular control of activation and priming in macrophages. Nat Immunol 17, 26–33 (2016). https://doi.org/10.1038/ni.3306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing