Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Inflammatory networks underlying colorectal cancer

Abstract

Inflammation is emerging as one of the hallmarks of cancer, yet its role in most tumors remains unclear. Whereas a minority of solid tumors are associated with overt inflammation, long-term treatment with non-steroidal anti-inflammatory drugs is remarkably effective in reducing cancer rate and death. This indicates that inflammation might have many as-yet-unrecognized facets, among which an indolent course might be far more prevalent than previously appreciated. In this Review, we explore the various inflammatory processes underlying the development and progression of colorectal cancer and discuss anti-inflammatory means for its prevention and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The inflammatory spectrum underlying the development of CRC.
Figure 2: DNA damage and the innate immune response.
Figure 3: Inflammatory basis of sporadic CRC or of CAC.
Figure 4: Therapeutic modulation of the inflammatory environment in CRC.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R.A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Aggarwal, B.B., Vijayalekshmi, R.V. & Sung, B. Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin. Cancer Res. 15, 425–430 (2009).

    CAS  PubMed  Google Scholar 

  3. Balkwill, F.R. & Mantovani, A. Cancer-related inflammation: common themes and therapeutic opportunities. Semin. Cancer Biol. 22, 33–40 (2012).

    CAS  PubMed  Google Scholar 

  4. Rowan, A.J. et al. APC mutations in sporadic colorectal tumors: A mutational “hotspot” and interdependence of the “two hits”. Proc. Natl. Acad. Sci. USA 97, 3352–3357 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Groden, J. et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 66, 589–600 (1991).

    CAS  PubMed  Google Scholar 

  6. Jess, T., Frisch, M. & Simonsen, J. Trends in overall and cause-specific mortality among patients with inflammatory bowel disease from 1982 to 2010. Clin. Gastroenterol. Hepatol. 11, 43–48 (2013).

    PubMed  Google Scholar 

  7. Labayle, D. et al. Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101, 635–639 (1991).

    CAS  PubMed  Google Scholar 

  8. Burn, J. et al. Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378, 2081–2087 (2011).

    PubMed  PubMed Central  Google Scholar 

  9. Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809 (2009).

    CAS  PubMed  Google Scholar 

  10. Zhang, K., Hornef, M.W. & Dupont, A. The intestinal epithelium as guardian of gut barrier integrity. Cell. Microbiol. 17, 1561–1569 (2015).

    CAS  PubMed  Google Scholar 

  11. Tlaskalová-Hogenová, H. et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8, 110–120 (2011).

    PubMed  PubMed Central  Google Scholar 

  12. Tsiaoussis, G.I., Assimakopoulos, S.F., Tsamandas, A.C., Triantos, C.K. & Thomopoulos, K.C. Intestinal barrier dysfunction in cirrhosis: Current concepts in pathophysiology and clinical implications. World J Hepatol 7, 2058–2068 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Kiesslich, R. et al. Local barrier dysfunction identified by confocal laser endomicroscopy predicts relapse in inflammatory bowel disease. Gut 61, 1146–1153 (2012).

    CAS  PubMed  Google Scholar 

  14. Salim, S.Y. & Soderholm, J.D. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 362–381 (2011).

    PubMed  Google Scholar 

  15. Velcich, A. et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295, 1726–1729 (2002).

    CAS  PubMed  Google Scholar 

  16. Dunn, G.P., Koebel, C.M. & Schreiber, R.D. Interferons, immunity and cancer immunoediting. Nat. Rev. Immunol. 6, 836–848 (2006).

    CAS  PubMed  Google Scholar 

  17. Saleh, M. & Trinchieri, G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat. Rev. Immunol. 11, 9–20 (2011).

    CAS  PubMed  Google Scholar 

  18. Lin, W.W. & Karin, M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J. Clin. Invest. 117, 1175–1183 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Siegal, F.P. et al. The nature of the principal type 1 interferon-producing cells in human blood. Science 284, 1835–1837 (1999).

    CAS  PubMed  Google Scholar 

  20. Schoggins, J.W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  22. Kemp, M.G. & Sancar, A. DNA excision repair: where do all the dimers go? Cell Cycle 11, 2997–3002 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharma, S., Fitzgerald, K.A., Cancro, M.P. & Marshak-Rothstein, A. Nucleic acid-sensing receptors: rheostats of autoimmunity and autoinflammation. J. Immunol. 195, 3507–3512 (2015).

    CAS  PubMed  Google Scholar 

  24. Härtlova, A. et al. DNA damage primes the type I interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity 42, 332–343 (2015).

    PubMed  Google Scholar 

  25. Zhu, Q. et al. Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation. J. Immunol. 193, 4779–4782 (2014).

    CAS  PubMed  Google Scholar 

  26. Dihlmann, S. et al. Lack of Absent in Melanoma 2 (AIM2) expression in tumor cells is closely associated with poor survival in colorectal cancer patients. Int. J. Cancer 135, 2387–2396 (2014).

    CAS  PubMed  Google Scholar 

  27. Hou, J. et al. Hepatic RIG-I predicts survival and interferon-α therapeutic response in hepatocellular carcinoma. Cancer Cell 25, 49–63 (2014).

    CAS  PubMed  Google Scholar 

  28. Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

    CAS  PubMed  Google Scholar 

  29. Hoque, R. et al. TLR9 and the NLRP3 inflammasome link acinar cell death with inflammation in acute pancreatitis. Gastroenterology 141, 358–369 (2011).

    CAS  PubMed  Google Scholar 

  30. Pétrilli, V., Dostert, C., Muruve, D.A. & Tschopp, J. The inflammasome: a danger sensing complex triggering innate immunity. Curr. Opin. Immunol. 19, 615–622 (2007).

    PubMed  Google Scholar 

  31. Vanaja, S.K., Rathinam, V.A. & Fitzgerald, K.A. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol. 25, 308–315 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanarek, N. et al. Critical role for IL-1β in DNA damage-induced mucositis. Proc. Natl. Acad. Sci. USA 111, E702–E711 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Harrison, O.J. et al. Epithelial-derived IL-18 regulates Th17 cell differentiation and Foxp3+ Treg cell function in the intestine. Mucosal Immunol. 8, 1226–1236 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Sellin, M.E., Maslowski, K.M., Maloy, K.J. & Hardt, W.D. Inflammasomes of the intestinal epithelium. Trends Immunol. 36, 442–450 (2015).

    CAS  PubMed  Google Scholar 

  37. Hu, B. et al. Inflammation-induced tumorigenesis in the colon is regulated by caspase-1 and NLRC4. Proc. Natl. Acad. Sci. USA 107, 21635–21640 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Man, S.M. et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162, 45–58 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rommereim, L.M. & Subramanian, N. AIMing 2 Curtail Cancer. Cell 162, 18–20 (2015).

    CAS  PubMed  Google Scholar 

  40. Wlodarska, M. et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 156, 1045–1059 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Normand, S. et al. Nod-like receptor pyrin domain-containing protein 6 (NLRP6) controls epithelial self-renewal and colorectal carcinogenesis upon injury. Proc. Natl. Acad. Sci. USA 108, 9601–9606 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Khor, B., Gardet, A. & Xavier, R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Muise, A.M. et al. Polymorphisms in E-cadherin (CDH1) result in a mis-localised cytoplasmic protein that is associated with Crohn's disease. Gut 58, 1121–1127 (2009).

    CAS  PubMed  Google Scholar 

  45. Sabath, E. et al. Galpha12 regulates protein interactions within the MDCK cell tight junction and inhibits tight-junction assembly. J. Cell Sci. 121, 814–824 (2008).

    CAS  PubMed  Google Scholar 

  46. Jostins, L. et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Keshavarzian, A. et al. Excessive production of reactive oxygen metabolites by inflamed colon: analysis by chemiluminescence probe. Gastroenterology 103, 177–185 (1992).

    CAS  PubMed  Google Scholar 

  48. Rioux, J.D. et al. Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat. Genet. 39, 596–604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hampe, J. et al. A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat. Genet. 39, 207–211 (2007).

    CAS  PubMed  Google Scholar 

  50. McCarroll, S.A. et al. Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn's disease. Nat. Genet. 40, 1107–1112 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kaser, A. et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134, 743–756 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Cattin, A.L. et al. Hepatocyte nuclear factor 4alpha, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol. Cell. Biol. 29, 6294–6308 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Villani, A.C. et al. Common variants in the NLRP3 region contribute to Crohn's disease susceptibility. Nat. Genet. 41, 71–76 (2009).

    CAS  PubMed  Google Scholar 

  54. Allen, I.C. et al. The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J. Exp. Med. 207, 1045–1056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Zaki, M.H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Adolph, T.E. et al. Paneth cells as a site of origin for intestinal inflammation. Nature 503, 272–276 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Biswas, A. et al. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc. Natl. Acad. Sci. USA 107, 14739–14744 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Porter, E.M., Bevins, C.L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cellular and molecular life sciences. Cell. Mol. Life Sci. 59, 156–170 (2002).

    CAS  PubMed  Google Scholar 

  60. Sato, T. et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415–418 (2011).

    CAS  PubMed  Google Scholar 

  61. Ben-Neriah, Y. & Karin, M. Inflammation meets cancer, with NF-κB as the matchmaker. Nat. Immunol. 12, 715–723 (2011).

    CAS  PubMed  Google Scholar 

  62. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    CAS  PubMed  Google Scholar 

  63. Shaked, H. et al. Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proc. Natl. Acad. Sci. USA 109, 14007–14012 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Greten, F.R. et al. IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118, 285–296 (2004).

    CAS  PubMed  Google Scholar 

  65. West, N.R., McCuaig, S., Franchini, F. & Powrie, F. Emerging cytokine networks in colorectal cancer. Nat. Rev. Immunol. 15, 615–629 (2015).

    CAS  PubMed  Google Scholar 

  66. Grivennikov, S. et al. IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bollrath, J. et al. gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15, 91–102 (2009).

    CAS  PubMed  Google Scholar 

  68. Rokavec, M. et al. IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J. Clin. Invest. 124, 1853–1867 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Feldmann, M. Development of anti-TNF therapy for rheumatoid arthritis. Nat. Rev. Immunol. 2, 364–371 (2002).

    CAS  PubMed  Google Scholar 

  70. Reich, K. et al. Infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial. Lancet 366, 1367–1374 (2005).

    CAS  PubMed  Google Scholar 

  71. Moller, D.E. Potential role of TNF-α in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol. Metab. 11, 212–217 (2000).

    CAS  PubMed  Google Scholar 

  72. Schwitalla, S. et al. Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152, 25–38 (2013).

    CAS  PubMed  Google Scholar 

  73. Pribluda, A. et al. A senescence-inflammatory switch from cancer-inhibitory to cancer-promoting mechanism. Cancer Cell 24, 242–256 (2013).

    CAS  PubMed  Google Scholar 

  74. Tilstra, J.S. et al. NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J. Clin. Invest. 122, 2601–2612 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Schwitalla, S. et al. Loss of p53 in enterocytes generates an inflammatory microenvironment enabling invasion and lymph node metastasis of carcinogen-induced colorectal tumors. Cancer Cell 23, 93–106 (2013).

    CAS  PubMed  Google Scholar 

  76. Cooks, T. et al. Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23, 634–646 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rodrigues, N.R. et al. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. USA 87, 7555–7559 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Brentnall, T.A. et al. Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology 107, 369–378 (1994).

    CAS  PubMed  Google Scholar 

  79. Tjalsma, H., Boleij, A., Marchesi, J.R. & Dutilh, B.E. A bacterial driver-passenger model for colorectal cancer: beyond the usual suspects. Nat. Rev. Microbiol. 10, 575–582 (2012).

    CAS  PubMed  Google Scholar 

  80. Parsonnet, J. et al. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325, 1127–1131 (1991).

    CAS  PubMed  Google Scholar 

  81. The EUROGAST Study Group. An international association between Helicobacter pylori infection and gastric cancer. Lancet 341, 1359–1362 (1993).

  82. Wotherspoon, A.C., Ortiz-Hidalgo, C., Falzon, M.R. & Isaacson, P.G. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 338, 1175–1176 (1991).

    CAS  PubMed  Google Scholar 

  83. Wotherspoon, A.C. et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet 342, 575–577 (1993).

    CAS  PubMed  Google Scholar 

  84. Zhang, Y.J. et al. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 16, 7493–7519 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. O'Hara, A.M. & Shanahan, F. The gut flora as a forgotten organ. EMBO Rep. 7, 688–693 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Elinav, E. et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 13, 759–771 (2013).

    CAS  PubMed  Google Scholar 

  87. Sears, C.L. & Garrett, W.S. Microbes, microbiota, and colon cancer. Cell Host Microbe 15, 317–328 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Grivennikov, S.I. et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491, 254–258 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Wang, K. et al. Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41, 1052–1063 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lévy, J. et al. Intestinal inhibition of Atg7 prevents tumour initiation through a microbiome-influenced immune response and suppresses tumour growth. Nat. Cell Biol 17, 1062–1073 (2015).

    PubMed  Google Scholar 

  91. Kirchberger, S. et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210, 917–931 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mathew, R., Karantza-Wadsworth, V. & White, E. Role of autophagy in cancer. Nat. Rev. Cancer 7, 961–967 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Vitale, I., Manic, G., Dandrea, V. & De Maria, R. Role of autophagy in the maintenance and function of cancer stem cells. Int. J. Dev. Biol. 59, 95–108 (2015).

    CAS  PubMed  Google Scholar 

  94. Jiang, X., Overholtzer, M. & Thompson, C.B. Autophagy in cellular metabolism and cancer. J. Clin. Invest. 125, 47–54 (2015).

    PubMed  PubMed Central  Google Scholar 

  95. Ijssennagger, N. et al. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc. Natl. Acad. Sci. USA 112, 10038–10043 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Abdulamir, A.S., Hafidh, R.R. & Bakar, F.A. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8. Mol. Cancer 9, 249 (2010).

    PubMed  PubMed Central  Google Scholar 

  97. Wu, S., Lim, K.C., Huang, J., Saidi, R.F. & Sears, C.L. Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc. Natl. Acad. Sci. USA 95, 14979–14984 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Housseau, F. & Sears, C.L. Enterotoxigenic Bacteroides fragilis (ETBF)-mediated colitis in Min (Apc+/−) mice: a human commensal-based murine model of colon carcinogenesis. Cell Cycle 9, 3–5 (2010).

    CAS  PubMed  Google Scholar 

  99. Wu, S. et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med. 15, 1016–1022 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Bondar, T. & Medzhitov, R. The origins of tumor-promoting inflammation. Cancer Cell 24, 143–144 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Amit, S. et al. Axin-mediated CKI phosphorylation of β-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes Dev. 16, 1066–1076 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Elyada, E. et al. CKIα ablation highlights a critical role for p53 in invasiveness control. Nature 470, 409–413 (2011).

    CAS  PubMed  Google Scholar 

  103. Bos, C.L. et al. Effect of aspirin on the Wnt/β-catenin pathway is mediated via protein phosphatase 2A. Oncogene 25, 6447–6456 (2006).

    CAS  PubMed  Google Scholar 

  104. Waddell, W.R., Ganser, G.F., Cerise, E.J. & Loughry, R.W. Sulindac for polyposis of the colon. Am. J. Surg. 157, 175–179 (1989).

    CAS  PubMed  Google Scholar 

  105. Beazer-Barclay, Y. et al. Sulindac suppresses tumorigenesis in the Min mouse. Carcinogenesis 17, 1757–1760 (1996).

    CAS  PubMed  Google Scholar 

  106. Thun, M.J., Namboodiri, M.M. & Heath, C.W. Jr. Aspirin use and reduced risk of fatal colon cancer. N. Engl. J. Med. 325, 1593–1596 (1991).

    CAS  PubMed  Google Scholar 

  107. Sandler, R.S. et al. A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N. Engl. J. Med. 348, 883–890 (2003).

    CAS  PubMed  Google Scholar 

  108. Ng, K. et al. Aspirin and COX-2 inhibitor use in patients with stage III colon cancer. J. Natl. Cancer Inst. 107, 345 (2015).

    PubMed  Google Scholar 

  109. Rothwell, P.M. et al. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377, 31–41 (2011).

    CAS  PubMed  Google Scholar 

  110. Fraser, D.M., Sullivan, F.M., Thompson, A.M. & McCowan, C. Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br. J. Cancer 111, 623–627 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Streicher, S.A., Yu, H., Lu, L., Kidd, M.S. & Risch, H.A. Case-control study of aspirin use and risk of pancreatic cancer. Cancer Epidemiol. Biomarkers Prev. 23, 1254–1263 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Hawkey, C.J. COX-2 inhibitors. Lancet 353, 307–314 (1999).

    CAS  PubMed  Google Scholar 

  113. Williams, C.S., Shattuck-Brandt, R.L. & DuBois, R.N. The role of COX-2 in intestinal cancer. Expert Opin. Investig. Drugs 8, 1–12 (1999).

    CAS  PubMed  Google Scholar 

  114. Holmes, M.D. et al. COX-2 expression predicts worse breast cancer prognosis and does not modify the association with aspirin. Breast Cancer Res. Treat. 130, 657–662 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Cascinu, S. et al. COX-2 and NF-κB overexpression is common in pancreatic cancer but does not predict for COX-2 inhibitors activity in combination with gemcitabine and oxaliplatin. Am. J. Clin. Oncol. 30, 526–530 (2007).

    CAS  PubMed  Google Scholar 

  116. Han, S.L., Tang, H.J., Hua, Y.W., Ji, S.Q. & Lin, D.X. Expression of COX-2 in stomach cancers and its relation to their biological features. Dig. Surg. 20, 107–114 (2003).

    CAS  PubMed  Google Scholar 

  117. Kömhoff, M. et al. Enhanced expression of cyclooxygenase-2 in high grade human transitional cell bladder carcinomas. Am. J. Pathol. 157, 29–35 (2000).

    PubMed  PubMed Central  Google Scholar 

  118. Achiwa, H. et al. Prognostic significance of elevated cyclooxygenase 2 expression in primary, resected lung adenocarcinomas. Clin. Cancer Res. 5, 1001–1005 (1999).

    CAS  PubMed  Google Scholar 

  119. Vane, J.R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat. New Biol. 231, 232–235 (1971).

    CAS  PubMed  Google Scholar 

  120. Sheng, H., Shao, J., Washington, M.K. & DuBois, R.N. Prostaglandin E2 increases growth and motility of colorectal carcinoma cells. J. Biol. Chem. 276, 18075–18081 (2001).

    CAS  PubMed  Google Scholar 

  121. Williams, C.S., Mann, M. & DuBois, R.N. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene 18, 7908–7916 (1999).

    CAS  PubMed  Google Scholar 

  122. Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Herfs, M., Hubert, P. & Delvenne, P. Epithelial metaplasia: adult stem cell reprogramming and (pre)neoplastic transformation mediated by inflammation? Trends Mol. Med. 15, 245–253 (2009).

    CAS  PubMed  Google Scholar 

  124. Liu, X.H. et al. Prostaglandin E2 modulates components of the Wnt signaling system in bone and prostate cancer cells. Biochem. Biophys. Res. Commun. 394, 715–720 (2010).

    CAS  PubMed  Google Scholar 

  125. Liao, X. et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N. Engl. J. Med. 367, 1596–1606 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Domingo, E. et al. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J. Clin. Oncol. 31, 4297–4305 (2013).

    CAS  PubMed  Google Scholar 

  127. Deisseroth, A. et al. FDA approval: siltuximab for the treatment of patients with multicentric Castleman disease. Clin. Cancer Res. 21, 950–954 (2015).

    CAS  PubMed  Google Scholar 

  128. Karsdal, M.A. et al. IL-6 receptor inhibition positively modulates bone balance in rheumatoid arthritis patients with an inadequate response to anti-tumor necrosis factor therapy: biochemical marker analysis of bone metabolism in the tocilizumab RADIATE study (NCT00106522). Semin. Arthritis Rheum. 42, 131–139 (2012).

    CAS  PubMed  Google Scholar 

  129. Heinrich, P.C. et al. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem. J. 374, 1–20 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Putoczki, T.L. et al. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24, 257–271 (2013).

    CAS  PubMed  Google Scholar 

  131. Peyrin-Biroulet, L. Anti-TNF therapy in inflammatory bowel diseases: a huge review. Minerva Gastroenterol. Dietol. 56, 233–243 (2010).

    CAS  PubMed  Google Scholar 

  132. Huang, E.S., Strate, L.L., Ho, W.W., Lee, S.S. & Chan, A.T. Long-term use of aspirin and the risk of gastrointestinal bleeding. Am. J. Med. 124, 426–433 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Biffi, A. et al. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology 75, 693–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Bruns, H. et al. Anti-TNF immunotherapy reduces CD8+ T cell-mediated antimicrobial activity against Mycobacterium tuberculosis in humans. J. Clin. Invest. 119, 1167–1177 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Ali, T. et al. Clinical use of anti-TNF therapy and increased risk of infections. Drug Healthc. Patient Saf. 5, 79–99 (2013).

    PubMed  PubMed Central  Google Scholar 

  136. Ordonez, M.E., Farraye, F.A. & Di Palma, J.A. Endemic fungal infections in inflammatory bowel disease associated with anti-TNF antibody therapy. Inflamm. Bowel Dis. 19, 2490–2500 (2013).

    PubMed  Google Scholar 

  137. Mercer, L.K. et al. The influence of anti-TNF therapy upon incidence of keratinocyte skin cancer in patients with rheumatoid arthritis: longitudinal results from the British Society for Rheumatology Biologics Register. Ann. Rheum. Dis. 71, 869–874 (2012).

    CAS  PubMed  Google Scholar 

  138. Hoshi, D. et al. Incidence of serious respiratory infections in patients with rheumatoid arthritis treated with tocilizumab. Mod. Rheum. 22, 122–127 (2012).

    CAS  Google Scholar 

  139. Galon, J. et al. Towards the introduction of the 'Immunoscore' in the classification of malignant tumours. J. Pathol. 232, 199–209 (2014).

    CAS  PubMed  Google Scholar 

  140. Tosolini, M. et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 71, 1263–1271 (2011).

    CAS  PubMed  Google Scholar 

  141. Le, D.T. et al. PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med. 372, 2509–2520 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Cole, B.F. et al. Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. J. Natl. Cancer Inst. 101, 256–266 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Burn, J. et al. A randomized placebo-controlled prevention trial of aspirin and/or resistant starch in young people with familial adenomatous polyposis. Cancer Prev. Res. (Phila.) 4, 655–665 (2011).

    CAS  Google Scholar 

  144. https://clinicaltrials.gov/ct2/show/NCT00565708?term=NCT00565708&rank=1.

  145. https://clinicaltrials.gov/ct2/show/NCT02301286?term=NCT02301286&rank=1.

  146. Ait Ouakrim, D. et al. Aspirin, ibuprofen, and the risk of colorectal cancer in Lynch syndrome. J. Natl. Cancer Inst. 107, djv170 (2015).

    PubMed  PubMed Central  Google Scholar 

  147. Steinbach, G. et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N. Engl. J. Med. 342, 1946–1952 (2000).

    CAS  PubMed  Google Scholar 

  148. Bertagnolli, M.M. et al. Five-year efficacy and safety analysis of the Adenoma Prevention with Celecoxib Trial. Cancer Prev. Res. (Phila.) 2, 310–321 (2009).

    CAS  Google Scholar 

  149. https://clinicaltrials.gov/ct2/show/NCT01150045?term=NCT01150045&rank=1.

  150. https://clinicaltrials.gov/ct2/show/NCT00159484?term=NCT00159484&rank=1.

  151. https://clinicaltrials.gov/ct2/show/NCT00033371?term=NCT00033371&rank=1.

  152. https://clinicaltrials.gov/ct2/show/NCT01483144?term=NCT01483144&rank=1.

  153. https://clinicaltrials.gov/ct2/show/NCT02060188?term=NCT02060188&rank=1.

  154. Angevin, E. et al. A phase I/II, multiple-dose, dose-escalation study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with advanced solid tumors. Clin. Cancer Res. 20, 2192–2204 (2014).

    CAS  PubMed  Google Scholar 

  155. https://clinicaltrials.gov/ct2/show/NCT01458574?term=NCT01458574&rank=1.

  156. https://clinicaltrials.gov/ct2/show/NCT01470599?term=NCT01470599&rank=1.

  157. Dinarello, C.A. Why not treat human cancer with interleukin-1 blockade? Cancer Metastasis Rev. 29, 317–329 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wang, Y. et al. Neutrophil infiltration favors colitis-associated tumorigenesis by activating the interleukin-1 (IL-1)/IL-6 axis. Mucosal Immunol. 7, 1106–1115 (2014).

    CAS  PubMed  Google Scholar 

  159. Xiao, H. et al. The Toll-interleukin-1 receptor member SIGIRR regulates colonic epithelial homeostasis, inflammation, and tumorigenesis. Immunity 26, 461–475 (2007).

    CAS  PubMed  Google Scholar 

  160. https://clinicaltrials.gov/ct2/show/NCT02090101?term=NCT02090101&rank=1.

  161. Pitzalis, C., Jones, G.W., Bombardieri, M. & Jones, S.A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    CAS  PubMed  Google Scholar 

  162. Dieu-Nosjean, M.C., Goc, J., Giraldo, N.A., Sautes-Fridman, C. & Fridman, W.H. Tertiary lymphoid structures in cancer and beyond. Trends Immunol. 35, 571–580 (2014).

    CAS  PubMed  Google Scholar 

  163. Coppola, D. et al. Unique ectopic lymph node-like structures present in human primary colorectal carcinoma are identified by immune gene array profiling. Am. J. Pathol. 179, 37–45 (2011).

    PubMed  PubMed Central  Google Scholar 

  164. Finkin, S. et al. Ectopic lymphoid structures function as microniches for tumor progenitor cells in hepatocellular carcinoma. Nat. Immunol. 16, 1235–1244 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Kaplan, K.B. et al. A role for the Adenomatous Polyposis Coli protein in chromosome segregation. Nat. Cell Biol. 3, 429–432 (2001).

    CAS  PubMed  Google Scholar 

  166. Peltomäki, P. Deficient DNA mismatch repair: a common etiologic factor for colon cancer. Hum. Mol. Genet. 10, 735–740 (2001).

    PubMed  Google Scholar 

  167. Ferguson, B.J., Mansur, D.S., Peters, N.E., Ren, H. & Smith, G.L. DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. eLife 1, e00047 (2012).

    PubMed  PubMed Central  Google Scholar 

  168. Kondo, T. et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl. Acad. Sci. USA 110, 2969–2974 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Goodwin, A.C. et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc. Natl. Acad. Sci. USA 108, 15354–15359 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Bergounioux, J. et al. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium's epithelial niche. Cell Host Microbe 11, 240–252 (2012).

    CAS  PubMed  Google Scholar 

  171. Cuevas-Ramos, G. et al. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl. Acad. Sci. USA 107, 11537–11542 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Gur, C. et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42, 344–355 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by Israeli Science Foundation Centers of Excellence, the European Research Council Framework Programme 7 (294390 PICHO), The Dr. Miriam and Sheldon G. Adelson Medical Research Foundation, the I-CORE program of the Israel Science Foundation (41/11) and the Israel Cancer Research Fund (Y.B.-N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinon Ben-Neriah.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasry, A., Zinger, A. & Ben-Neriah, Y. Inflammatory networks underlying colorectal cancer. Nat Immunol 17, 230–240 (2016). https://doi.org/10.1038/ni.3384

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3384

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer