Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The chemokine receptor D6 limits the inflammatory response in vivo

Abstract

How the inflammatory response is initiated has been well defined but relatively little is known about how such responses are resolved. Here we show that the D6 chemokine receptor is involved in the post-inflammatory clearance of β-chemokines from cutaneous sites. After induction of inflammation by phorbol esters, wild-type mice showed a transient inflammatory response. However, in D6-deficient mice, an excess concentration of residual chemokines caused a notable inflammatory pathology with similarities to human psoriasis. These results suggest that D6 is involved in the resolution of the cutaneous inflammatory response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The generation of D6-deficient mice.
Figure 2: The clearance of cutaneous β-chemokines is delayed in the D6-deficient mice.
Figure 3: Development of an inflammatory cutaneous pathology in D6-deficient mice.
Figure 4: Inflamed D6-deficient mouse skin is characterized by altered proliferation, differentiation, angiogenesis and MIP-2 production.
Figure 5: The cutaneous pathology that develops in the D6-deficient mice is dependent on TNF and chemokines.
Figure 6: Characterization of the cellular infiltrate in inflamed D6-deficient mouse skin.
Figure 7: The cutaneous pathology in the D6-deficient mice is T cell dependent.
Figure 8: Mast cell products are involved in the development of the cutaneous inflammatory pathology in the D6-deficient mice.

Similar content being viewed by others

References

  1. Rollins, B.J. Chemokines. Blood 90, 909–928 (1997).

    CAS  PubMed  Google Scholar 

  2. Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Mantovani, A. The chemokine system: redundancy for robust outputs. Immunol. Today 20, 254–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Murphy, P.M. et al. International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacol. Rev. 52, 145–176 (2000).

    CAS  PubMed  Google Scholar 

  5. Nibbs, R.J., Wylie, S.M., Yang, J., Landau, N.R. & Graham, G.J. Cloning and characterization of a novel promiscuous human β-chemokine receptor D6. J. Biol. Chem. 272, 32078–32083 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Bonecchi, R. et al. Differential recognition and scavenging of native and truncated macrophage-derived chemokine (macrophage-derived chemokine/CC chemokine ligand 22) by the D6 decoy receptor. J. Immunol. 172, 4972–4976 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Nibbs, R.J. et al. The β-chemokine receptor D6 is expressed by lymphatic endothelium and a subset of vascular tumors. Am. J. Pathol. 158, 867–877 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Weber, M. et al. The chemokine receptor D6 constitutively traffics to and from the cell surface to internalize and degrade chemokines. Mol. Biol. Cell 15, 2492–2508 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fra, A.M. et al. Cutting edge: scavenging of inflammatory CC chemokines by the promiscuous putatively silent chemokine receptor D6. J. Immunol. 170, 2279–2282 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Galliera, E. et al. β-Arrestin-dependent constitutive internalization of the human chemokine decoy receptor D6. J. Biol. Chem. 279, 25590–25597 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Blackburn, P.E. et al. Purification and biochemical characterization of the D6 chemokine receptor. Biochem. J. 379, 263–272 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mantovani, A., Locati, M., Polentarutti, N., Vecchi, A. & Garlanda, C. Extracellular and intracellular decoys in the tuning of inflammatory cytokines and Toll-like receptors: the new entry TIR8/SIGIRR. J. Leukoc. Biol. 75, 738–742 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Nibbs, R., Graham, G. & Rot, A. Chemokines on the move: control by the chemokine “interceptors” Duffy blood group antigen and D6. Semin. Immunol. 15, 287–294 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Sisskin, E.E., Gray, T. & Barrett, J.C. Correlation between sensitivity to tumor promotion and sustained epidermal hyperplasia of mice and rats treated with 12-O-tetra-decanoylphorbol-13-acetate. Carcinogenesis 3, 403–407 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Lewis, J.G. & Adams, D.O. Early inflammatory changes in the skin of SENCAR and C57BL/6 mice following exposure to 12-O-tetradecanoylphorbol-13-acetate. Carcinogenesis 8, 889–898 (1987).

    Article  CAS  PubMed  Google Scholar 

  16. Cataisson, C. et al. Activation of cutaneous protein kinase C alpha induces keratinocyte apoptosis and intraepidermal inflammation by independent signaling pathways. J. Immunol. 171, 2703–2713 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Moore, R.J. et al. Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis. Nat. Med. 5, 828–831 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Bos, J.D. & De Rie, M.A. The pathogenesis of psoriasis: immunological facts and speculations. Immunol. Today 20, 40–46 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Nickoloff, B.J. & Nestle, F.O. Recent insights into the immunopathogenesis of psoriasis provide new therapeutic opportunities. J. Clin. Invest. 113, 1664–1675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schon, M.P. Animal models of psoriasis — what can we learn from them? J. Invest. Dermatol. 112, 405–410 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Gisondi, P., Gubinelli, E., Cocuroccia, B. & Girolomoni, G. Targeting tumor necrosis factor-α in the therapy of psoriasis. Curr. Drug Targets Inflamm. Allergy 3, 175–183 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Gottlieb, A.B. Infliximab for psoriasis. J. Am. Acad. Dermatol. 49, S112–S117 (2003).

    Article  PubMed  Google Scholar 

  23. van Berkel, V. et al. Identification of a gammaherpesvirus selective chemokine binding protein that inhibits chemokine action. J. Virol. 74, 6741–6747 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parry, C.M. et al. A broad spectrum secreted chemokine binding protein encoded by a herpesvirus. J. Exp. Med. 191, 573–578 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang, W.Y., Chattedee, A.D., Raychaudhuri, S.P., Raychaudhuri, S.K. & Farber, E.M. Mast cell density and IL-8 expression in nonlesional and lesional psoriatic skin. Int. J. Dermatol. 40, 699–703 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Schon, M.P., Detmar, M. & Parker, C.M. Murine psoriasis-like disorder induced by naive CD4+ T cells. Nat. Med. 3, 183–188 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Ackermann, L. et al. Mast cells in psoriatic skin are strongly positive for interferon-gamma. Br. J. Dermatol. 140, 624–633 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. Nickoloff, B.J. & Wrone-Smith, T. Injection of pre-psoriatic skin with CD4+ T cells induces psoriasis. Am. J. Pathol. 155, 145–158 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ovigne, J.M., Baker, B.S., Brown, D.W., Powles, A.V. & Fry, L. Epidermal CD8+ T cells in chronic plaque psoriasis are Tc1 cells producing heterogeneous levels of interferon-γ. Exp. Dermatol. 10, 168–174 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Prinz, J.C. The role of T cells in psoriasis. J. Eur. Acad. Dermatol. Venereol. 17, 257–270 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Chen, R. et al. Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid. J. Clin. Invest. 108, 1151–1158 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Papadopoulos, E.J. et al. Mast cells migrate, but do not degranulate, in response to fractalkine, a membrane-bound chemokine expressed constitutively in diverse cells of the skin. Eur. J. Immunol. 30, 2355–2361 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Nilsson, G., Mikovits, J.A., Metcalfe, D.D. & Taub, D.D. Mast cell migratory response to interleukin-8 is mediated through interaction with chemokine receptor CXCR2/Interleukin-8RB. Blood 93, 2791–2797 (1999).

    CAS  PubMed  Google Scholar 

  34. Taub, D. et al. Bone marrow-derived murine mast cells migrate, but do not degranulate, in response to chemokines. J. Immunol. 154, 2393–2402 (1995).

    CAS  PubMed  Google Scholar 

  35. Roach, D.R. et al. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 168, 4620–4627 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Wright, T.W. et al. TNF receptor signaling contributes to chemokine secretion, inflammation, and respiratory deficits during Pneumocystis pneumonia. J. Immunol. 172, 2511–2521 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Bowcock, A.M. et al. Insights into psoriasis and other inflammatory diseases from large-scale gene expression studies. Hum. Mol. Genet. 10, 1793–1805 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Zhou, X. et al. Novel mechanisms of T-cell and dendritic cell activation revealed by profiling of psoriasis on the 63,100-element oligonucleotide array. Physiol. Genomics 13, 69–78 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Nomura, I. et al. Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J. Immunol. 171, 3262–3269 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Austin, L.M., Ozawa, M., Kikuchi, T., Walters, I.B. & Krueger, J.G. The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-γ, interleukin-2, and tumor necrosis factor-α, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: a type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Invest. Dermatol. 113, 752–759 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Nickoloff, B.J. The immunologic and genetic basis of psoriasis. Arch. Dermatol. 135, 1104–1110 (1999).

    CAS  PubMed  Google Scholar 

  42. Wrone-Smith, T. & Nickoloff, B.J. Dermal injection of immunocytes induces psoriasis. J. Clin. Invest. 98, 1878–1887 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Szabo, S.K., Hammerberg, C., Yoshida, Y., Bata-Csorgo, Z. & Cooper, K.D. Identification and quantitation of interferon-γ producing T cells in psoriatic lesions: localization to both CD4+ and CD8+ subsets. J. Invest. Dermatol. 111, 1072–1078 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Ackermann, L. & Harvima, I.T. Mast cells of psoriatic and atopic dermatitis skin are positive for TNF-α and their degranulation is associated with expression of ICAM-1 in the epidermis. Arch. Dermatol. Res. 290, 353–359 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Proudfoot, A.E., Power, C.A., Rommel, C. & Wells, T.N. Strategies for chemokine antagonists as therapeutics. Semin. Immunol. 15, 57–65 (2003).

    Article  CAS  PubMed  Google Scholar 

  46. Proudfoot, A.E. et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. USA 100, 1885–1890 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nibbs, R.J., Yang, J., Landau, N.R., Mao, J.H. & Graham, G.J. LD78β, a non-allelic variant of human MIP-1α (LD78α), has enhanced receptor interactions and potent HIV suppressive activity. J. Biol. Chem. 274, 17478–17483 (1999).

    Article  CAS  PubMed  Google Scholar 

  48. Proost, P., Mahieu, F., Schutyser, E. & Van Damme, J. Posttranslational processing of chemokines. Methods Mol. Biol. 239, 27–44 (2004).

    PubMed  Google Scholar 

  49. Proost, P. et al. Cleavage by CD26/dipeptidyl peptidase IV converts the chemokine LD78β into a most efficient monocyte attractant and CCR1 agonist. Blood 96, 1674–1680 (2000).

    CAS  PubMed  Google Scholar 

  50. Oberyszyn, T.M. et al. β2 integrin/ICAM-1 adhesion molecule interactions in cutaneous inflammation and tumor promotion. Carcinogenesis 19, 445–455 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank F.Y. Liew, P. Garside, A. Mowat and I. McInnes for discussions and for comments on the manuscript. Supported by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerard J Graham.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamieson, T., Cook, D., Nibbs, R. et al. The chemokine receptor D6 limits the inflammatory response in vivo. Nat Immunol 6, 403–411 (2005). https://doi.org/10.1038/ni1182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1182

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing