Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CTLA-4–Ig regulates tryptophan catabolism in vivo

Abstract

Cytotoxic T lymphocyte–associated antigen 4 (CTLA-4) plays a critical role in peripheral tolerance. However, regulatory pathways initiated by the interactions of CTLA-4 with B7 counterligands expressed on antigen-presenting cells are not completely understood. We show here that long-term survival of pancreatic islet allografts induced by the soluble fusion protein CTLA-4–immunoglobulin (CTLA-4–Ig) is contingent upon effective tryptophan catabolism in the host. In vitro, we show that CTLA-4–Ig regulates cytokine-dependent tryptophan catabolism in B7-expressing dendritic cells. These data suggest that modulation of tryptophan catabolism is a means by which CTLA-4 functions in vivo and that CTLA-4 acts as a ligand for B7 receptor molecules that transduce intracellular signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Soluble CTLA-4 initiates tryptophan catabolism in a dose- and time-dependent fashion.
Figure 2: B7 expression is required for IDO activation by CTLA-4–Ig.
Figure 3: Soluble CTLA-4 induces transcriptional expression of Ifng and production of the IFN-γ protein.
Figure 4: Production of IFN-γ and recruitment of STAT1 are required for IDO activation by soluble CTLA-4.

Similar content being viewed by others

References

  1. Thompson, C.B. & Allison, J.P. The emerging role of CTLA-4 as an immune attenuator. Immunity 7, 445–450 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Oosterwegel, M.A., Greenwald, R.J., Mandelbrot, D.A., Lorsbach, R.B. & Sharpe, A.H. CTLA-4 and T cell activation. Curr. Opin. Immunol. 11, 294–300 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Salomon, B. & Bluestone, J.A. Complexities of CD28/B7:CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu. Rev. Immunol. 19, 225–252 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Tivol, E. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA–4. Immunity 3, 541–547 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Perez, V.L. et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 6, 411–417 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Leach, D.R., Krummel, M.F. & Allison, J.P. Enhancement of antitumor immunity by CTLA-4 blockade. Science 271, 1734–1736 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Luhder, F., Hoglund, P., Allison, J.P., Benoist, C. & Mathis, D. Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) regulates the unfolding of autoimmune diabetes. J. Exp. Med. 187, 427–432 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Karandikar, N.J., Vanderlugt, C.L., Walunas, T.L., Miller, S.D. & Bluestone, J.A. CTLA-4: a negative regulator of autoimmune disease. J. Exp. Med. 184, 783–788 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, H. et al. Cytotoxic T lymphocyte antigen 4 (CTLA4) blockade accelerates the acute rejection of cardiac allografts in CD28-deficient mice: CTLA4 can function independently of CD28. J. Exp. Med. 188, 199–204 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fallarino, F., Fields, P.E. & Gajewski, T.F. B7-1 engagement of cytotoxic T lymphocyte antigen 4 inhibits T cell activation in the absence of CD28. J. Exp. Med. 188, 205–210 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fecteau, S. et al. CTLA-4 up-regulation plays a role in tolerance mediated by CD45. Nature Immunol. 2, 58–63 (2001).

    Article  CAS  Google Scholar 

  13. Turka, L.A. et al. T-cell activation by the CD28 ligand B7 is required for cardiac allograft rejection in vivo. Proc. Natl. Acad. Sci. USA 89, 11102–11105 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, W. et al. Costimulation blockade promotes the apoptotic death of graft-infiltrating T cells and prolongs survival of hepatic allografts from FLT3L-treated donors. Transplantation 78, 1423–1432 (2001).

    Article  Google Scholar 

  15. Lenschow, D.J. et al. Long-term survival of xenogeneic pancreatic islet grafts induced by CTLA4Ig. Science 257, 789–792 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Judge, T.A. et al. The role of CD80, CD86, and CTLA4 in alloimmune responses and the induction of long-term allograft survival. J. Immunol. 162, 1947–1951 (1999).

    CAS  PubMed  Google Scholar 

  17. Zheng, X.X. et al. The role of donor and recipient B7-1 (CD80) in allograft rejection. J. Immunol. 159, 1169–1173 (1997).

    CAS  PubMed  Google Scholar 

  18. Suvas, S., Singh, V., Sahdev, S., Vohra, H. & Agrewala, J.N. Distinct role of CD80 and CD86 in the regulation of the activation of B cell and B cell lymphomas. J. Biol. Chem. 277, 7766–7775 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Munn, D.H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Munn, D.H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mellor, A.L. et al. Prevention of T cell-driven complement activation and inflammation by tryptophan catabolism during pregnancy. Nature Immunol. 2, 64–68 (2001).

    Article  CAS  Google Scholar 

  22. Grohmann, U. et al. IFN-γ inhibits presentation of a tumor/self peptide by CD8α dendritic cells via potentiation of the CD8α+ subset. J. Immunol. 165, 1357–1363 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Grohmann et al. IL-6 inhibits the tolerogenic function of CD8α+ dendritic cells expressing indoleamine 2,3-dioxygenase. J. Immunol. 167, 708–714 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Fallarino, F. et al. Functional expression of indoleamine 2,3-dioxygenase by murine CD8α+ dendritic cells. Int. Immunol. 14, 65–68 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Tran, H.M. et al. Distinct mechanisms for the induction and maintenance of allograft tolerance with CTLA-4-Fc treatment. J. Immunol. 159, 2232–2239 (1997).

    CAS  PubMed  Google Scholar 

  26. Taylor, M.W. & Feng G.S. Relationship between interferon-γ, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB J. 5, 2516–2522 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Gajewski, T.F., Fallarino, F., Uyttenhove, C. & Boon, T. Tumor rejection requires a CTLA-4 ligand provided by the host or expressed on the tumor: superiority of B7-1 over B7-2 for active tumor immunization. J. Immunol. 156, 2909–2917 (1996)

    CAS  PubMed  Google Scholar 

  28. Hassanain, H.H., Chon, S.Y. & Gupta S.L. Differential regulation of human indoleamine 2,3-dioxygenase gene expression by interferons-γ and -α. Analysis of the regulatory region of the gene and identification of an interferon-γ-inducible DNA-binding factor. J. Biol. Chem. 268, 5077–5084 (1993).

    CAS  PubMed  Google Scholar 

  29. Babcock, T.A. & Carlin, J.M. Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor α in interferon-treated epithelial cells. Cytokine 12, 588–594 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Grohmann, U. & Puccetti, P. The immunosuppressive activity of proinflammatory cytokines in experimental models: potential for therapeutic intervention in autoimmunity. Curr. Drug Targets Inflamm. Aller. 1, 77–87 (2002).

    Article  CAS  Google Scholar 

  31. Sica, A. et al. Interaction of NF-κB and NFAT with the interferon-γ promoter. J. Biol. Chem. 272, 30412–30420 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, S. & Kaplan, M.H. The p38 mitogen-activated protein kinase is required for IL-12-induced IFN-γ expression. J. Immunol. 165, 1374–1380 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Saccani, S., Pantano, S. & Natoli, G. p38-dependent marking of inflammatory genes for increased NF-κB recruitment. Nature Immunol. 3, 69–75 (2002).

    Article  CAS  Google Scholar 

  34. Greenwald, R.J., Boussiotis, V.A., Lorsbach, R.B., Abbas, A.K. & Sharpe, A.H. CTLA-4 regulates induction of anergy in vivo. Immunity 14, 145–155 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Hall, B.M., Jelbart, M.E., Gurley, K.E. & Dorsch, S.E. Specific unresponsiveness in rats with prolonged cardiac allograft survival after treatment with cyclosporine: mediation of specific suppression by T helper/inducer cells. J. Exp. Med. 162, 1683–1694 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Qin, S. et al. “Infectious” transplantation tolerance. Science 259, 975–977 (1993).

    Article  Google Scholar 

  37. Grohmann, U. et al. CD40 ligation ablates the tolerogenic potential of lymphoid dendritic cells. J. Immunol. 166, 277–283 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Mellor, A.L. & Munn, D.H. Tryptophan catabolism and T-cell tolerance: immunosuppression by starvation? Immunol. Today 20, 469–473 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Fallarino, F. et al. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9, 1069–1077 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Latour, S. et al. Bidirectional negative regulation of human T and dendritic cells by CD47 and its cognate receptor signal-regulator protein-α: down-regulation of IL-12 responsiveness and inhibition of dendritic cell activation. J. Immunol. 167, 2547–2554 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. Suzuki, I. & Fink, P.J. Maximal proliferation of cytotoxic T lymphocytes requires reverse signaling through Fas ligand. J. Exp. Med. 187, 123–128 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van Kooten, C. & Banchereau, J. Functions of CD40 on B cells, dendritic cells and other cells. Curr. Opin. Immunol. 9, 330–337 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Nathan, C. & Muller, W.A. Putting the brakes on innate immunity: a regulatory role for CD200? Nature Immunol. 2, 17–19 (2001).

    Article  CAS  Google Scholar 

  44. Cowan, C.A. & Henkemeyer, M. Ephrins in reverse, park and drive. Trends Cell. Biol. 12, 339–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Kacktein, H., Morelli, A.E. & Thomson, A.W. Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol. 22, 437–442 (2001).

    Article  Google Scholar 

  46. O'Connell, P.J. et al. Immature and mature CD8α+ dendritic cells prolong the survival of vascularized heart allografts. J. Immunol. 168, 143–154 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Frasca, L., Scotta, C., Lombardi, G. & Piccolella, E. Human anergic CD4+ T cells can act as suppressor cells by affecting autologous dendritic cell conditioning and survival. J. Immunol. 168, 1060–1068 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Nakaseko, C. et al. Cytotoxic T lymphocyte antigen 4 (CTLA-4) engagement delivers an inhibitory signal through the membrane-proximal region in the absence of the tyrosine motif in the cytoplasmic tail. J. Exp. Med. 190, 765–774 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mandelbrot, D.A. et al. Expression of B7 molecules in recipient, not donor, mice determines the survival of cardiac allografts. J. Immunol. 163, 3753–3757 (1999).

    CAS  PubMed  Google Scholar 

  50. Chang, T.T., Jabs, C., Sobel, R.A., Kuchroo, V.K. & Sharpe, A.H. Studies in B7-deficient mice reveal a critical role for B7 costimulation in both induction and effector phases of experimental autoimmune encephalomyelitis. J. Exp. Med. 190, 733–740 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-γ genes. Science 259, 1739–1742 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Fallarino, F. & Gajewski, T.F. Differentiation of antitumor CTL in vivo requires host expression of Stat1. J. Immunol. 163, 4109–4113 (1999).

    CAS  PubMed  Google Scholar 

  53. Grohmann, U. et al. IL-12 acts directly on DC to promote nuclear localization of NF-κB and primes DC for IL-12 production. Immunitys 9, 315–323 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported in part by the Juvenile Diabetes Research Foundation International (U. G.) and the Italian Association for Cancer Research (P. P.). We thank A. L. Mellor for the generous gift of IDO-specific reagents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Grohmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grohmann, U., Orabona, C., Fallarino, F. et al. CTLA-4–Ig regulates tryptophan catabolism in vivo. Nat Immunol 3, 1097–1101 (2002). https://doi.org/10.1038/ni846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing